On the Paneitz energy on standard three sphere
ESAIM: Control, Optimisation and Calculus of Variations (2004)
- Volume: 10, Issue: 2, page 211-223
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topYang, Paul, and Zhu, Meijun. "On the Paneitz energy on standard three sphere." ESAIM: Control, Optimisation and Calculus of Variations 10.2 (2004): 211-223. <http://eudml.org/doc/246042>.
@article{Yang2004,
abstract = {We prove that the Paneitz energy on the standard three-sphere $S^3$ is bounded from below and extremal metrics must be conformally equivalent to the standard metric.},
author = {Yang, Paul, Zhu, Meijun},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Paneitz operator; symmetrization; extremal metric},
language = {eng},
number = {2},
pages = {211-223},
publisher = {EDP-Sciences},
title = {On the Paneitz energy on standard three sphere},
url = {http://eudml.org/doc/246042},
volume = {10},
year = {2004},
}
TY - JOUR
AU - Yang, Paul
AU - Zhu, Meijun
TI - On the Paneitz energy on standard three sphere
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2004
PB - EDP-Sciences
VL - 10
IS - 2
SP - 211
EP - 223
AB - We prove that the Paneitz energy on the standard three-sphere $S^3$ is bounded from below and extremal metrics must be conformally equivalent to the standard metric.
LA - eng
KW - Paneitz operator; symmetrization; extremal metric
UR - http://eudml.org/doc/246042
ER -
References
top- [1] A. Jun, C. Kai-Seng and W. Juncheng, Self-similar solutions for the anisotropic affine curve shortening problem. Calc. Var. Partial Differ. Equ. 13 (2001) 311-337. Zbl1086.35035MR1865001
- [2] T. Branson, Differential operators canonically associated to a conformal structure. Math. Scand. 57 (1985) 293-345. Zbl0596.53009MR832360
- [3] Y.S. Choi and X. Xu, Nonlinear biharmonic equation with negative exponent. Preprint (1999).
- [4] Z. Djadli, E. Hebey and M. Ledoux, Paneitz type operators and applications. Duke Math. J. 104 (2000) 129-169. Zbl0998.58009MR1769728
- [5] C. Fefferman and R. Graham, Conformal Invariants, in Élie Cartan et les Mathématiques d’aujourd’hui, Asterisque (1985) 95-116. Zbl0602.53007
- [6] E. Hebey and F. Robert, Coercivity and Struwe’s compactness for Paneitz type operators with constant coefficients. Calc. Var. Partial Differ. Equ. 13 (2001) 491-517. Zbl0998.58007
- [7] E. Hebey, Sharp Sobolev inequalities of second order. J. Geom. Anal. 13 (2003) 145-162. Zbl1032.58008MR1967041
- [8] S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds. Preprint (1983). Zbl1145.53053
- [9] G. Talenti, Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1976) 697-718. Zbl0341.35031MR601601
- [10] J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations. Math. Ann. 313 (1999) 207-228. Zbl0940.35082MR1679783
- [11] X. Xu and P. Yang, On a fourth order equation in 3-D, A tribute to J.L. Lions. ESAIM: COCV 8 (2002) 1029-1042. Zbl1071.53526MR1932985
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.