Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes
ESAIM: Control, Optimisation and Calculus of Variations (2002)
- Volume: 7, page 309-334
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topRaitums, Uldis. "Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes." ESAIM: Control, Optimisation and Calculus of Variations 7 (2002): 309-334. <http://eudml.org/doc/246050>.
@article{Raitums2002,
abstract = {We consider the weak closure $WZ$ of the set $Z$ of all feasible pairs (solution, flow) of the family of potential elliptic systems\begin\{gather\}\operatorname\{div\}\left(\sum \limits \_\{s=1\}^\{s\_0\}\sigma \_s(x)F\_s^\prime (\nabla u(x)+g(x))-f(x)\right)=0\;\text\{in\}\,\Omega ,\\ u=(u\_1,\dots , u\_m)\in H\_0^1(\Omega ;\{\bf R\}^m),\;\sigma =(\sigma \_1,\dots ,\sigma \_\{s\_0\})\in S, \end\{gather\}where $\Omega \subset \{\bf R\}^n$ is a bounded Lipschitz domain, $F_s$ are strictly convex smooth functions with quadratic growth and $S=\lbrace \sigma \, measurable\,\mid \,\sigma _s(x)=0\;\mbox\{or\}\,1,\;s=1,\dots ,s_0,\;\sigma _1(x)+\cdots +\sigma _\{s_0\}(x)=1\rbrace $. We show that $WZ$ is the zero level set for an integral functional with the integrand $Q\mathcal \{F\}$ being the $\{\bf A\}$-quasiconvex envelope for a certain function $\mathcal \{F\}$ and the operator $\{\bf A\}=(\mbox\{curl,div\})^m$. If the functions $F_s$ are isotropic, then on the characteristic cone $\Lambda $ (defined by the operator $\{\bf A\}$) $Q\{\mathcal \{F\}\}$ coincides with the $\{\bf A\}$-polyconvex envelope of $\mathcal \{F\}$ and can be computed by means of rank-one laminates.},
author = {Raitums, Uldis},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {quasilinear elliptic system; relaxation; A-quasiconvex envelope; -quasiconvex envelope; integral functional},
language = {eng},
pages = {309-334},
publisher = {EDP-Sciences},
title = {Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes},
url = {http://eudml.org/doc/246050},
volume = {7},
year = {2002},
}
TY - JOUR
AU - Raitums, Uldis
TI - Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 7
SP - 309
EP - 334
AB - We consider the weak closure $WZ$ of the set $Z$ of all feasible pairs (solution, flow) of the family of potential elliptic systems\begin{gather}\operatorname{div}\left(\sum \limits _{s=1}^{s_0}\sigma _s(x)F_s^\prime (\nabla u(x)+g(x))-f(x)\right)=0\;\text{in}\,\Omega ,\\ u=(u_1,\dots , u_m)\in H_0^1(\Omega ;{\bf R}^m),\;\sigma =(\sigma _1,\dots ,\sigma _{s_0})\in S, \end{gather}where $\Omega \subset {\bf R}^n$ is a bounded Lipschitz domain, $F_s$ are strictly convex smooth functions with quadratic growth and $S=\lbrace \sigma \, measurable\,\mid \,\sigma _s(x)=0\;\mbox{or}\,1,\;s=1,\dots ,s_0,\;\sigma _1(x)+\cdots +\sigma _{s_0}(x)=1\rbrace $. We show that $WZ$ is the zero level set for an integral functional with the integrand $Q\mathcal {F}$ being the ${\bf A}$-quasiconvex envelope for a certain function $\mathcal {F}$ and the operator ${\bf A}=(\mbox{curl,div})^m$. If the functions $F_s$ are isotropic, then on the characteristic cone $\Lambda $ (defined by the operator ${\bf A}$) $Q{\mathcal {F}}$ coincides with the ${\bf A}$-polyconvex envelope of $\mathcal {F}$ and can be computed by means of rank-one laminates.
LA - eng
KW - quasilinear elliptic system; relaxation; A-quasiconvex envelope; -quasiconvex envelope; integral functional
UR - http://eudml.org/doc/246050
ER -
References
top- [1] J. Ball, B. Kirchheim and J. Kristensen, Regularity of quasiconvex envelopes, Preprint No. 72/1999. Max-Planck Institute für Mathematik in der Naturwissenschaften, Leipzig (1999). Zbl0972.49024MR1808126
- [2] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer: Berlin, Heidelberg, New York (1989). Zbl0703.49001MR990890
- [3] I. Fonseca and S. Müller, A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999) 1355-1390. Zbl0940.49014MR1718306
- [4] R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems, Parts I-III. Comm. Pure Appl. Math. 39 (1986) 113-137, 138-182, 353-377. Zbl0609.49008
- [5] K.A. Lurie, A.V. Fedorov and A.V. Cherkaev, Regularization of optimal problems of design of bars and plates, Parts 1 and 2. JOTA 37 (1982) 499-543. Zbl0464.73109MR669842
- [6] M. Miettinen and U. Raitums, On -regularity of functions that define G-closure. Z. Anal. Anwendungen 20 (2001) 203-214. Zbl0984.49018MR1826327
- [7] F. Murat, Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Super. Pisa 8 (1981) 69-102. Zbl0464.46034MR616901
- [8] U. Raitums, Properties of optimal control problems for elliptic equations, edited by W. Jäger et al., Partial Differential Equations Theory and Numerical Solutions. Boca Raton: Chapman & Hall/CRC, Res. Notes in Math. 406 (2000) 290-297. Zbl0942.49006MR1713894
- [9] L. Tartar, An introduction to the homogenization method in optimal design. CIME Summer Course. Troia (1998). http://www.math.cmu.edu/cna/publications.html Zbl1040.49022
- [10] V.V. Zhikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer: Berlin, Hedelberg, New York (1994). Zbl0838.35001MR1329546
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.