Eigenspace of a three-dimensional max-Łukasiewicz fuzzy matrix
Imran Rashid; Martin Gavalec; Sergeĭ Sergeev
Kybernetika (2012)
- Volume: 48, Issue: 2, page 309-328
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topRashid, Imran, Gavalec, Martin, and Sergeev, Sergeĭ. "Eigenspace of a three-dimensional max-Łukasiewicz fuzzy matrix." Kybernetika 48.2 (2012): 309-328. <http://eudml.org/doc/246141>.
@article{Rashid2012,
abstract = {Eigenvectors of a fuzzy matrix correspond to stable states of a complex discrete-events system, characterized by a given transition matrix and fuzzy state vectors. Description of the eigenspace (set of all eigenvectors) for matrices in max-min or max-drast fuzzy algebra was presented in previous papers. In this paper the eigenspace of a three-dimensional fuzzy matrix in max-Łukasiewicz algebra is investigated. Necessary and sufficient conditions are shown under which the eigenspace restricted to increasing eigenvectors of a given matrix is non-empty, and the structure of the increasing eigenspace is described. Complete characterization of the general eigenspace structure for arbitrary three-dimensional fuzzy matrix, using simultaneous row and column permutations of the matrix, is presented in Sections 4 and 5, with numerical examples in Section 6.},
author = {Rashid, Imran, Gavalec, Martin, Sergeev, Sergeĭ},
journal = {Kybernetika},
keywords = {Łukasiewicz triangular norm; max-t fuzzy algebra; eigenproblem; monotone eigenvector; Łukasiewicz triangular norm; max-t fuzzy algebra; eigenproblem; monotone eigenvector},
language = {eng},
number = {2},
pages = {309-328},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Eigenspace of a three-dimensional max-Łukasiewicz fuzzy matrix},
url = {http://eudml.org/doc/246141},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Rashid, Imran
AU - Gavalec, Martin
AU - Sergeev, Sergeĭ
TI - Eigenspace of a three-dimensional max-Łukasiewicz fuzzy matrix
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 2
SP - 309
EP - 328
AB - Eigenvectors of a fuzzy matrix correspond to stable states of a complex discrete-events system, characterized by a given transition matrix and fuzzy state vectors. Description of the eigenspace (set of all eigenvectors) for matrices in max-min or max-drast fuzzy algebra was presented in previous papers. In this paper the eigenspace of a three-dimensional fuzzy matrix in max-Łukasiewicz algebra is investigated. Necessary and sufficient conditions are shown under which the eigenspace restricted to increasing eigenvectors of a given matrix is non-empty, and the structure of the increasing eigenspace is described. Complete characterization of the general eigenspace structure for arbitrary three-dimensional fuzzy matrix, using simultaneous row and column permutations of the matrix, is presented in Sections 4 and 5, with numerical examples in Section 6.
LA - eng
KW - Łukasiewicz triangular norm; max-t fuzzy algebra; eigenproblem; monotone eigenvector; Łukasiewicz triangular norm; max-t fuzzy algebra; eigenproblem; monotone eigenvector
UR - http://eudml.org/doc/246141
ER -
References
top- K. Cechlárová, 10.1016/0024-3795(92)90302-Q, Lin. Algebra Appl. 175 (1992), 63-73. Zbl0756.15014MR1179341DOI10.1016/0024-3795(92)90302-Q
- K. Cechlárová, Efficient computation of the greatest eigenvector in fuzzy algebra., Tatra Mt. Math. Publ. 12 (1997), 73-79. Zbl0963.65041MR1607194
- G. Cohen, D. Dubois, J. P. Quadrat, M. Viot, 10.1109/TAC.1985.1103925, IEE Trans. Automat. Control AC-30 (1985), 210-220. MR0778424DOI10.1109/TAC.1985.1103925
- R. A. Cuninghame-Green, 10.1057/jors.1962.10, Oper. Res. Quart. 13 (1962), 95-100. DOI10.1057/jors.1962.10
- R. A. Cuninghame-Green, Minimax Algebra., Lect. Notes in Econom. and Math. Systems 166, Springer-Verlag, Berlin 1979. Zbl0739.90073MR0580321
- R. A. Cuninghame-Green, Minimax Algebra and Application., In: Advances in Imaging and Electron Physics 90, (P. W. Hawkes, ed.), Academic Press, New York 1995.
- M. Gavalec, 10.1016/S0024-3795(01)00488-8, Lin. Algebra Appl. 345 (2002), 149-167. Zbl0994.15010MR1883271DOI10.1016/S0024-3795(01)00488-8
- M. Gavalec, I. Rashid, Monotone eigenspace structure of a max-drast fuzzy matrix., In: Proc. 28th Internat. Conf. Mathematical Methods in Economics, University of South Bohemia, České Budějovice 2010, pp. 162-167.
- M. Gavalec, I. Rashid, S. Sergeev, Monotone eigenspace structure of a max-prod fuzzy matrix., In preparation.
- M. Gondran, Valeurs propres et vecteurs propres en classification hiérarchique., RAIRO Informatique Théorique 10 (1976), 39-46. MR0411059
- M. Gondran, M. Minoux, Eigenvalues and eigenvectors in semimodules and their interpretation in graph theory., In: Proc. 9th Prog. Symp. 1976, pp. 133-148. Zbl0453.05028
- M. Gondran, M. Minoux, Valeurs propres et vecteurs propres en théorie des graphes., Colloq. Internat. CNRS (1978), 181-183.
- G. Olsder, Eigenvalues of dynamic max-min systems., In: Discrete Events Dynamic Systems 1, Kluwer Academic Publishers 1991, pp. 177-201. Zbl0747.93014
- E. Sanchez, 10.1016/0165-0114(78)90033-7, Fuzzy Sets and Systems 1 (1978), 69-74. Zbl0366.04001MR0494745DOI10.1016/0165-0114(78)90033-7
- Yi-Jia Tan, 10.1016/S0024-3795(98)10105-2, Lin. Algebra Appl. 283 (1998), 257-272. MR1657171DOI10.1016/S0024-3795(98)10105-2
- Yi-Jia Tan, 10.1016/S0024-3795(00)00168-3, Lin. Algebra Appl. 336 (2001), 1-14. MR1855387DOI10.1016/S0024-3795(00)00168-3
- U. Zimmermann, Linear and Combinatorial Optimization in Ordered Algebraic Structure., Ann. Discrete Math. 10, North Holland, Amsterdam 1981. MR0609751
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.