Reproducing kernels for Dunkl polyharmonic polynomials

Kamel Touahri

Commentationes Mathematicae Universitatis Carolinae (2012)

  • Volume: 53, Issue: 1, page 37-50
  • ISSN: 0010-2628

Abstract

top
In this paper, we compute explicitly the reproducing kernel of the space of homogeneous polynomials of degree n and Dunkl polyharmonic of degree m , i.e. Δ k m u = 0 , m { 0 } , where Δ k is the Dunkl Laplacian and we study the convergence of the orthogonal series of Dunkl polyharmonic homogeneous polynomials.

How to cite

top

Touahri, Kamel. "Reproducing kernels for Dunkl polyharmonic polynomials." Commentationes Mathematicae Universitatis Carolinae 53.1 (2012): 37-50. <http://eudml.org/doc/246209>.

@article{Touahri2012,
abstract = {In this paper, we compute explicitly the reproducing kernel of the space of homogeneous polynomials of degree $n$ and Dunkl polyharmonic of degree $m$, i.e. $\Delta _\{k\}^\{m\}u=0$, $m\in \mathbb \{N\}\setminus \lbrace 0\rbrace $, where $\Delta _\{k\}$ is the Dunkl Laplacian and we study the convergence of the orthogonal series of Dunkl polyharmonic homogeneous polynomials.},
author = {Touahri, Kamel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Dunkl Laplacian; reproducing kernel; Dunkl Laplacian; reproducing kernel},
language = {eng},
number = {1},
pages = {37-50},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Reproducing kernels for Dunkl polyharmonic polynomials},
url = {http://eudml.org/doc/246209},
volume = {53},
year = {2012},
}

TY - JOUR
AU - Touahri, Kamel
TI - Reproducing kernels for Dunkl polyharmonic polynomials
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 1
SP - 37
EP - 50
AB - In this paper, we compute explicitly the reproducing kernel of the space of homogeneous polynomials of degree $n$ and Dunkl polyharmonic of degree $m$, i.e. $\Delta _{k}^{m}u=0$, $m\in \mathbb {N}\setminus \lbrace 0\rbrace $, where $\Delta _{k}$ is the Dunkl Laplacian and we study the convergence of the orthogonal series of Dunkl polyharmonic homogeneous polynomials.
LA - eng
KW - Dunkl Laplacian; reproducing kernel; Dunkl Laplacian; reproducing kernel
UR - http://eudml.org/doc/246209
ER -

References

top
  1. Dunkl C.F., 10.1090/S0002-9947-1989-0951883-8, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167–183. MR0951883DOI10.1090/S0002-9947-1989-0951883-8
  2. Dunkl C.F., Xu Y., Orthogonal Polynomials of Several Variables, Cambridge Univ. Press, Cambridge, 2001. Zbl0964.33001MR1827871
  3. Kuran Ü., 10.1112/jlms/s2-4.1.15, J. London Math. Soc. (2) 4 (1971), 15–26. Zbl0219.31013MR0293116DOI10.1112/jlms/s2-4.1.15
  4. Mejjaoli H., Trimèche K., 10.1080/10652460108819351, Integral Transform. Spec. Funct. 12 (2001), no. 3, 279–302. MR1872437DOI10.1080/10652460108819351
  5. Ren G.B., 10.1007/BF02884718, Sci. China Ser. A 48 (2005), suppl., 333–342. Zbl1131.43010MR2156514DOI10.1007/BF02884718
  6. Render H., 10.1007/s00013-008-2447-9, Arch. Math. 91 (2008), 136–144. Zbl1151.31007MR2430797DOI10.1007/s00013-008-2447-9
  7. Rösler M., 10.1007/3-540-44945-0_3, (Leuven, 2002), Lecture Notes in Mathematics, 1817, Springer, Berlin, 2003, pp. 93–135. MR2022853DOI10.1007/3-540-44945-0_3
  8. Rösler M., 10.1007/s002200050307, Comm. Math. Phys. 192 (1998), 519–542. MR1620515DOI10.1007/s002200050307
  9. Trimèche K., 10.1080/10652460108819358, Integral Transform. Spec. Funct. 12 (2001), no. 4, 349–374. MR1872375DOI10.1080/10652460108819358

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.