Global existence of solutions for the 1-D radiative and reactive viscous gas dynamics
Applications of Mathematics (2012)
- Volume: 57, Issue: 2, page 109-128
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZhang, Wen, and Zhang, Jianwen. "Global existence of solutions for the 1-D radiative and reactive viscous gas dynamics." Applications of Mathematics 57.2 (2012): 109-128. <http://eudml.org/doc/246220>.
@article{Zhang2012,
abstract = {In this paper, we prove the existence of a global solution to an initial-boundary value problem for 1-D flows of the viscous heat-conducting radiative and reactive gases. The key point here is that the growth exponent of heat conductivity is allowed to be any nonnegative constant; in particular, constant heat conductivity is allowed.},
author = {Zhang, Wen, Zhang, Jianwen},
journal = {Applications of Mathematics},
keywords = {reactive and radiative gas; global solution; global a priori estimates; reactive and radiative gas; global solution; global a priori estimate},
language = {eng},
number = {2},
pages = {109-128},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global existence of solutions for the 1-D radiative and reactive viscous gas dynamics},
url = {http://eudml.org/doc/246220},
volume = {57},
year = {2012},
}
TY - JOUR
AU - Zhang, Wen
AU - Zhang, Jianwen
TI - Global existence of solutions for the 1-D radiative and reactive viscous gas dynamics
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 2
SP - 109
EP - 128
AB - In this paper, we prove the existence of a global solution to an initial-boundary value problem for 1-D flows of the viscous heat-conducting radiative and reactive gases. The key point here is that the growth exponent of heat conductivity is allowed to be any nonnegative constant; in particular, constant heat conductivity is allowed.
LA - eng
KW - reactive and radiative gas; global solution; global a priori estimates; reactive and radiative gas; global solution; global a priori estimate
UR - http://eudml.org/doc/246220
ER -
References
top- Antontsev, S. N., Kazhikhov, A. V., Monakhov, V. N., Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland Amsterdam (1990). (1990) Zbl0696.76001MR1035212
- Bebernes, J., Bressan, A., 10.1017/S0308210500020862, Proc. R. Soc. Edinb., Sect. A 101 (1985), 321-333. (1985) Zbl0614.76076MR0824230DOI10.1017/S0308210500020862
- Bebernes, J., Eberly, D., Mathematical Problems from Combustion Theory, Springer New York (1989). (1989) Zbl0692.35001MR1012946
- Chen, G.-Q., 10.1137/0523031, SIAM J. Math. Anal. 23 (1992), 609-634. (1992) MR1158824DOI10.1137/0523031
- Chen, G.-Q., Hoff, D., Trivisa, K., 10.1007/s00205-002-0233-6, Arch. Ration. Mech. Anal. 166 (2003), 321-358. (2003) MR1961444DOI10.1007/s00205-002-0233-6
- Ducomet, B., 10.1142/S0129055X96000354, Rev. Math. Phys. 8 (1996), 957-1000. (1996) Zbl0949.76071MR1415382DOI10.1142/S0129055X96000354
- Ducomet, B., 10.1002/(SICI)1099-1476(199910)22:15<1323::AID-MMA80>3.0.CO;2-8, Math. Methods Appl. Sci. 22 (1999), 1323-1349. (1999) Zbl1027.85005MR1710987DOI10.1002/(SICI)1099-1476(199910)22:15<1323::AID-MMA80>3.0.CO;2-8
- Ducomet, B., 10.1023/A:1021754900964, Appl. Math. 47 (2002), 45-75. (2002) Zbl1090.76517MR1876491DOI10.1023/A:1021754900964
- Ducomet, B., Zlotnik, A., 10.1007/s00205-005-0363-8, Arch. Ration. Mech. Anal. 177 (2005), 185-229. (2005) Zbl1070.76044MR2188048DOI10.1007/s00205-005-0363-8
- Ducomet, B., Zlotnik, A., 10.1016/j.na.2005.03.064, Nonlinear Anal., Theory Methods Appl. 63 (2005), 1011-1033. (2005) Zbl1083.35109MR2211579DOI10.1016/j.na.2005.03.064
- Song, J., 10.1006/jdeq.1994.1064, J. Differ. Equations 110 (1994), 157-181. (1994) MR1278368DOI10.1006/jdeq.1994.1064
- Kawohl, B., 10.1016/0022-0396(85)90023-3, J. Differ. Equations 58 (1985), 76-103. (1985) Zbl0579.35052MR0791841DOI10.1016/0022-0396(85)90023-3
- Kazhikhov, A. V., Shelukhin, V. V., 10.1016/0021-8928(77)90011-9, J. Appl. Math. Mech. 41 (1977), 282-291. (1977) MR0468593DOI10.1016/0021-8928(77)90011-9
- Lewicka, M., Mucha, P. B., 10.1016/j.na.2003.12.001, Nonlinear Anal., Theory Methods Appl. 57 (2004), 951-969. (2004) Zbl1094.76052MR2070619DOI10.1016/j.na.2003.12.001
- Mihalas, D., Mihalas, B. Weibel, Foundations of Radiation Hydrodynamics, Oxford University Press New York (1984). (1984) MR0781346
- Shelukhin, V. V., 10.1016/S0020-7462(97)00010-3, Int. J. Non-Linear Mech. 33 (1998), 247-257. (1998) Zbl0894.76071MR1469854DOI10.1016/S0020-7462(97)00010-3
- Solonnikov, V. A., Kazhikhov, A. V., 10.1146/annurev.fl.13.010181.000455, Ann. Rev. Fluid Mech. 13 (1981), 79-95. (1981) Zbl0492.76074DOI10.1146/annurev.fl.13.010181.000455
- Umehara, M., Tani, A., 10.1016/j.jde.2006.09.023, J. Differ. Equations 234 (2007), 439-463. (2007) Zbl1119.35070MR2300663DOI10.1016/j.jde.2006.09.023
- Wang, D., 10.3934/cpaa.2004.3.775, Commun. Pure Appl. Anal. 3 (2004), 775-790. (2004) Zbl1064.76091MR2106299DOI10.3934/cpaa.2004.3.775
- Williams, F. A., Combustion Theory: The Fundamental Theory of Chemically Reacting Flow System. 2nd ed, Benjamin-Cummings Publ. Co. San Francisco (1985). (1985)
- Yanagi, S., 10.1007/BF03167320, Japan J. Ind. Appl. Math. 15 (1998), 423-442. (1998) Zbl0912.76077MR1651737DOI10.1007/BF03167320
- Zel'dovich, Y. B., Raizer, Y. P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. 2, Academic Press New Work (1967). (1967)
- Zlotnik, A., 10.1023/B:MATN.0000015045.35518.a4, Math. Notes 75 (2004), 307-311. (2004) Zbl1122.35118MR2054563DOI10.1023/B:MATN.0000015045.35518.a4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.