Several applications of divergence criteria in continuous families
Michel Broniatowski; Igor Vajda
Kybernetika (2012)
- Volume: 48, Issue: 4, page 600-636
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBroniatowski, Michel, and Vajda, Igor. "Several applications of divergence criteria in continuous families." Kybernetika 48.4 (2012): 600-636. <http://eudml.org/doc/246232>.
@article{Broniatowski2012,
abstract = {This paper deals with four types of point estimators based on minimization of information-theoretic divergences between hypothetical and empirical distributions. These were introduced (i) by Liese and Vajda [9] and independently Broniatowski and Keziou [3], called here power superdivergence estimators, (ii) by Broniatowski and Keziou [4], called here power subdivergence estimators, (iii) by Basu et al. [2], called here power pseudodistance estimators, and (iv) by Vajda [18] called here Rényi pseudodistance estimators. These various criterions have in common to eliminate all need for grouping or smoothing in statistical inference. The paper studies and compares general properties of these estimators such as Fisher consistency and influence curves, and illustrates these properties by detailed analysis of the applications to the estimation of normal location and scale.},
author = {Broniatowski, Michel, Vajda, Igor},
journal = {Kybernetika},
keywords = {divergence; parametric estimation; robustness; robustness; divergence; parametric estimation},
language = {eng},
number = {4},
pages = {600-636},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Several applications of divergence criteria in continuous families},
url = {http://eudml.org/doc/246232},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Broniatowski, Michel
AU - Vajda, Igor
TI - Several applications of divergence criteria in continuous families
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 4
SP - 600
EP - 636
AB - This paper deals with four types of point estimators based on minimization of information-theoretic divergences between hypothetical and empirical distributions. These were introduced (i) by Liese and Vajda [9] and independently Broniatowski and Keziou [3], called here power superdivergence estimators, (ii) by Broniatowski and Keziou [4], called here power subdivergence estimators, (iii) by Basu et al. [2], called here power pseudodistance estimators, and (iv) by Vajda [18] called here Rényi pseudodistance estimators. These various criterions have in common to eliminate all need for grouping or smoothing in statistical inference. The paper studies and compares general properties of these estimators such as Fisher consistency and influence curves, and illustrates these properties by detailed analysis of the applications to the estimation of normal location and scale.
LA - eng
KW - divergence; parametric estimation; robustness; robustness; divergence; parametric estimation
UR - http://eudml.org/doc/246232
ER -
References
top- D. F. Andrews, P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, J. W. Tukey, Robust Estimates of Location., Princeton University Press, Princeton N. J. 1972. Zbl0254.62001MR0331595
- A. Basu, I. R. Harris, N. L. Hjort, M. C. Jones, 10.1093/biomet/85.3.549, Biometrika 85 (1998), 3, 549-559. MR1665873DOI10.1093/biomet/85.3.549
- M. Broniatowski, A. Keziou, Minimization of -divergences on sets of signed measures., Studia Sci. Math. Hungar. 43 (2006), 403-442. Zbl1121.28004MR2273419
- M. Broniatowski, A. Keziou, 10.1016/j.jmva.2008.03.011, J. Multivariate Anal. 100 (2009), 1, 16-31. Zbl1151.62023MR2460474DOI10.1016/j.jmva.2008.03.011
- M. Broniatowski, A. Toma, I. Vajda, 10.1016/j.jspi.2012.03.019, J. Statist. Plann. Inference. 142 (2012), 9, 2574-2585 MR2922007DOI10.1016/j.jspi.2012.03.019
- M. Broniatowski, I. Vajda, Several applications of divergence criteria in continuous families., arXiv:0911.0937v1, 2009.
- F. R. Hampel, E. M. Ronchetti, P. J. Rousseuw, W. A. Stahel, Robust Statistics: The approach Based on Influence Functions., Willey, New York 1986. MR0829458
- F. Liese, I. Vajda, Convex Statistical Distances., Teubner, Leipzig 1987. Zbl0656.62004MR0926905
- F. Liese, I. Vajda, 10.1109/TIT.2006.881731, IEEE Trans. Inform. Theory 52 (2006), 10, 4394-4412. MR2300826DOI10.1109/TIT.2006.881731
- C. Miescke, F. Liese, Statistical Decision Theory., Springer, Berlin 2008. Zbl1154.62008MR2421720
- M. R. C. Read, N. A. C. Cressie, Goodness-of-Fit Statistics for Discrete Multivariate Data., Springer, Berlin 1988. Zbl0663.62065MR0955054
- A. Rényi, On measures of entropy and information., In: Proc. 4th Berkeley Symp. on Probability and Statistics, Vol. 1, University of California Press, Berkeley 1961, pp. 547-561. Zbl0106.33001MR0132570
- A. Toma, M. Broniatowski, 10.1016/j.jmva.2010.07.010, J. Multivariate Anal. 102 (2011), 1, 20-36. MR2729417DOI10.1016/j.jmva.2010.07.010
- I. Vajda, Minimum divergence principle in statistical estimation., Statist. Decisions (1984), Suppl. Issue No. 1, 239-261. Zbl0558.62004MR0785211
- I. Vajda, Efficiency and robustness control via distorted maximum likelihood estimation., Kybernetika 22 (1986), 47-67. Zbl0603.62039MR0839344
- I. Vajda, Comparison of asymptotic variances for several estimators of location., Probl. Control Inform. Theory 18 (1989), 2, 79-89. Zbl0678.62035MR0991547
- I. Vajda, 10.1002/bimj.4710310706, Biometr. J. 31 (1989), 7, 803-810. MR1054736DOI10.1002/bimj.4710310706
- I. Vajda, Modifications od Divergence Criteria for Applications in Continuous Families., Research Report No. 2230, Institute of Information Theory and Automation, Prague 2008.
- A. W. van der Vaart, Asymptotic Statistics., Cambridge University Press, Cambridge 1998. Zbl0910.62001MR1652247
- A. W. van der Vaart, J. A. Wellner, Weak Convergence and Empirical Processes., Springer, Berlin 1996. Zbl0862.60002MR1385671
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.