Commutative subloop-free loops

Martin Beaudry; Louis Marchand

Commentationes Mathematicae Universitatis Carolinae (2011)

  • Volume: 52, Issue: 4, page 473-484
  • ISSN: 0010-2628

Abstract

top
We describe, in a constructive way, a family of commutative loops of odd order, n 7 , which have no nontrivial subloops and whose multiplication group is isomorphic to the alternating group 𝒜 n .

How to cite

top

Beaudry, Martin, and Marchand, Louis. "Commutative subloop-free loops." Commentationes Mathematicae Universitatis Carolinae 52.4 (2011): 473-484. <http://eudml.org/doc/246242>.

@article{Beaudry2011,
abstract = {We describe, in a constructive way, a family of commutative loops of odd order, $n\ge 7$, which have no nontrivial subloops and whose multiplication group is isomorphic to the alternating group $\mathcal \{A\}_n$.},
author = {Beaudry, Martin, Marchand, Louis},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {loops; multiplication group; alternating group; commutative loops; multiplication groups; alternating groups; partial Latin squares},
language = {eng},
number = {4},
pages = {473-484},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Commutative subloop-free loops},
url = {http://eudml.org/doc/246242},
volume = {52},
year = {2011},
}

TY - JOUR
AU - Beaudry, Martin
AU - Marchand, Louis
TI - Commutative subloop-free loops
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 4
SP - 473
EP - 484
AB - We describe, in a constructive way, a family of commutative loops of odd order, $n\ge 7$, which have no nontrivial subloops and whose multiplication group is isomorphic to the alternating group $\mathcal {A}_n$.
LA - eng
KW - loops; multiplication group; alternating group; commutative loops; multiplication groups; alternating groups; partial Latin squares
UR - http://eudml.org/doc/246242
ER -

References

top
  1. Albert A.A., 10.1090/S0002-9947-1943-0009962-7, Trans. Amer. Math. Soc. 54 (1943), 507–519. Zbl0063.00039MR0009962DOI10.1090/S0002-9947-1943-0009962-7
  2. Bruck R.H., Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245–354. Zbl0061.02201MR0017288
  3. Bruck R.H., A Survey of Binary Systems, Springer, 1966. Zbl0141.01401MR0093552
  4. Cameron P.J., 10.1016/0012-365X(92)90537-P, Discrete Math 106/107 (1992), 111–115. Zbl0786.20041MR1181904DOI10.1016/0012-365X(92)90537-P
  5. Cavenagh N.J., Greenhill C., Wanless I.M., 10.1002/rsa.20216, Random Structures Algorithms 33 (2008), 286–309. Zbl1202.05015MR2446483DOI10.1002/rsa.20216
  6. Chein O., Pfugfelder H.O., Smith J.D.H., Quasigroups and Loops: Theory and Applications, Helderman, Berlin, 1990. MR1125806
  7. Conway J.H., Hulpke A., McKay J., 10.1112/S1461157000000115, LMS J. Computer Math. 1 (1998), 1–8. Zbl0920.20001MR1635715DOI10.1112/S1461157000000115
  8. Drápal A., Kepka T., 10.1016/S0195-6698(89)80045-9, European J. Combin. 10 (1989), 175–180. Zbl0673.20038MR0988511DOI10.1016/S0195-6698(89)80045-9
  9. Guérin P., Génération des classes d’isomorphisme des boucles d’ordre 8 , Master Thesis, Université du Québec à Chicoutimi, 2003. 
  10. Häggkvist R., Janssen J.C.M., All-even latin squares, Discrete Math. 157 (1996), 199–206. Zbl0864.05017MR1417295
  11. Hall M., 10.1090/S0002-9904-1945-08361-X, Bull. Amer. Math. Soc. 51 (1945), 387–388. Zbl0060.02801MR0013111DOI10.1090/S0002-9904-1945-08361-X
  12. Hall M., The Theory of Groups, Macmillan, New York, 1959. Zbl0919.20001MR0103215
  13. Maenhaut B., Wanless I.M., Webb B.S., 10.1016/j.ejc.2005.07.002, European J. Combin. 28 (2007), 322–336. Zbl1109.05028MR2261822DOI10.1016/j.ejc.2005.07.002
  14. McKay B.D., Meynert A., Myrvold W., 10.1002/jcd.20105, J. Combin. Des. 15 (2007), 98–119. Zbl1112.05018MR2291523DOI10.1002/jcd.20105
  15. Niemenmaa M., Kepka T., 10.1016/0021-8693(90)90152-E, J. Algebra 135 (1990), 112–122. Zbl0706.20046MR1076080DOI10.1016/0021-8693(90)90152-E
  16. Pflugfelder H.O., Quasigroups and Loops: Introduction, Heldermann, Berlin, 1990. Zbl0715.20043MR1125767
  17. Vesanen A., 10.1080/00927879408824900, Comm. Algebra 22 (1994), 1177–1195. MR1261254DOI10.1080/00927879408824900
  18. Wielandt H., Finite Permutation Groups, Academic Press, New York-London, 1964. Zbl0138.02501MR0183775

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.