Contractible edges in some -connected graphs
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 3, page 637-644
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYang, Yingqiu, and Sun, Liang. "Contractible edges in some $k$-connected graphs." Czechoslovak Mathematical Journal 62.3 (2012): 637-644. <http://eudml.org/doc/246243>.
@article{Yang2012,
abstract = {An edge $e$ of a $k$-connected graph $G$ is said to be $k$-contractible (or simply contractible) if the graph obtained from $G$ by contracting $e$ (i.e., deleting $e$ and identifying its ends, finally, replacing each of the resulting pairs of double edges by a single edge) is still $k$-connected. In 2002, Kawarabayashi proved that for any odd integer $k\ge 5$, if $G$ is a $k$-connected graph and $G$ contains no subgraph $D=K_\{1\}+(K_\{2\}\cup K_\{1, 2\})$, then $G$ has a $k$-contractible edge. In this paper, by generalizing this result, we prove that for any integer $t\ge 3$ and any odd integer $k \ge 2t+1$, if a $k$-connected graph $G$ contains neither $K_\{1\}+(K_\{2\}\cup K_\{1, t\})$, nor $K_\{1\}+(2K_\{2\}\cup K_\{1, 2\})$, then $G$ has a $k$-contractible edge.},
author = {Yang, Yingqiu, Sun, Liang},
journal = {Czechoslovak Mathematical Journal},
keywords = {component; contractible edge; $k$-connected graph; minimally $k$-connected graph; -connected graph; contractible edges; forbidden subgraph; edge contraction},
language = {eng},
number = {3},
pages = {637-644},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Contractible edges in some $k$-connected graphs},
url = {http://eudml.org/doc/246243},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Yang, Yingqiu
AU - Sun, Liang
TI - Contractible edges in some $k$-connected graphs
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 637
EP - 644
AB - An edge $e$ of a $k$-connected graph $G$ is said to be $k$-contractible (or simply contractible) if the graph obtained from $G$ by contracting $e$ (i.e., deleting $e$ and identifying its ends, finally, replacing each of the resulting pairs of double edges by a single edge) is still $k$-connected. In 2002, Kawarabayashi proved that for any odd integer $k\ge 5$, if $G$ is a $k$-connected graph and $G$ contains no subgraph $D=K_{1}+(K_{2}\cup K_{1, 2})$, then $G$ has a $k$-contractible edge. In this paper, by generalizing this result, we prove that for any integer $t\ge 3$ and any odd integer $k \ge 2t+1$, if a $k$-connected graph $G$ contains neither $K_{1}+(K_{2}\cup K_{1, t})$, nor $K_{1}+(2K_{2}\cup K_{1, 2})$, then $G$ has a $k$-contractible edge.
LA - eng
KW - component; contractible edge; $k$-connected graph; minimally $k$-connected graph; -connected graph; contractible edges; forbidden subgraph; edge contraction
UR - http://eudml.org/doc/246243
ER -
References
top- Ando, K., Kaneko, A., Kawarabayashi, K., 10.1016/j.disc.2007.03.025, Discrete Math. 308 (2008), 597-602. (2008) Zbl1130.05032MR2376482DOI10.1016/j.disc.2007.03.025
- Ando, K., Kaneko, A., Kawarabayashi, K., Yoshiomoto, K., Contractible edges and bowties in a -connected graph, Ars Combin. 64 (2002), 239-247. (2002) Zbl1071.05543MR1914212
- Egawa, Y., Enomoto, H., Saito, A., 10.1007/BF02579387, Combinatorica 6 (1986), 269-274. (1986) Zbl0607.05046MR0875294DOI10.1007/BF02579387
- Halin, R., 10.1016/S0021-9800(69)80049-9, J. Combin. Theory 7 (1969), 150-154. (1969) Zbl0172.25803MR0248042DOI10.1016/S0021-9800(69)80049-9
- Kawarabayashi, K., Note on -contractible edges in -connected graphs, Australasian J. Combin. 24 (2001), 165-168. (2001) Zbl0982.05061MR1852817
- Kawarabayashi, K., 10.1006/jctb.2001.2096, J. Combin. Theory, Ser. B 85 (2002), 207-221. (2002) Zbl1031.05076MR1912964DOI10.1006/jctb.2001.2096
- Mader, W., 10.1007/BF01304873, Archiv der Mathematik 23 (1972), 219-224 German. (1972) Zbl0212.29402MR0306043DOI10.1007/BF01304873
- Mader, W., 10.1016/S0195-6698(85)80048-2, European J. Combin. 6 (1985), 353-359 German. (1985) MR0829354DOI10.1016/S0195-6698(85)80048-2
- Mader, W., 10.1016/0012-365X(88)90216-6, Discrete Math. 72 (1988), 267-283. (1988) MR0975546DOI10.1016/0012-365X(88)90216-6
- Thomassen, C., 10.1002/jgt.3190050403, J. Graph Theory 5 (1981), 351-354. (1981) MR0635696DOI10.1002/jgt.3190050403
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.