Base-base paracompactness and subsets of the Sorgenfrey line

Strashimir G. Popvassilev

Mathematica Bohemica (2012)

  • Volume: 137, Issue: 4, page 395-401
  • ISSN: 0862-7959

Abstract

top
A topological space X is called base-base paracompact (John E. Porter) if it has an open base such that every base ' has a locally finite subcover 𝒞 ' . It is not known if every paracompact space is base-base paracompact. We study subspaces of the Sorgenfrey line (e.g. the irrationals, a Bernstein set) as a possible counterexample.

How to cite

top

Popvassilev, Strashimir G.. "Base-base paracompactness and subsets of the Sorgenfrey line." Mathematica Bohemica 137.4 (2012): 395-401. <http://eudml.org/doc/246244>.

@article{Popvassilev2012,
abstract = {A topological space $X$ is called base-base paracompact (John E. Porter) if it has an open base $\mathcal \{B\}$ such that every base $\{\mathcal \{B\}^\{\prime \} \subseteq \mathcal \{B\}\}$ has a locally finite subcover $\mathcal \{C\} \subseteq \mathcal \{B\}^\{\prime \}$. It is not known if every paracompact space is base-base paracompact. We study subspaces of the Sorgenfrey line (e.g. the irrationals, a Bernstein set) as a possible counterexample.},
author = {Popvassilev, Strashimir G.},
journal = {Mathematica Bohemica},
keywords = {base-base paracompact space; coarse base; Sorgenfrey irrationals; totally imperfect set; base-base paracompact space; coarse base; Sorgenfrey irrationals; totally imperfect set},
language = {eng},
number = {4},
pages = {395-401},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Base-base paracompactness and subsets of the Sorgenfrey line},
url = {http://eudml.org/doc/246244},
volume = {137},
year = {2012},
}

TY - JOUR
AU - Popvassilev, Strashimir G.
TI - Base-base paracompactness and subsets of the Sorgenfrey line
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 4
SP - 395
EP - 401
AB - A topological space $X$ is called base-base paracompact (John E. Porter) if it has an open base $\mathcal {B}$ such that every base ${\mathcal {B}^{\prime } \subseteq \mathcal {B}}$ has a locally finite subcover $\mathcal {C} \subseteq \mathcal {B}^{\prime }$. It is not known if every paracompact space is base-base paracompact. We study subspaces of the Sorgenfrey line (e.g. the irrationals, a Bernstein set) as a possible counterexample.
LA - eng
KW - base-base paracompact space; coarse base; Sorgenfrey irrationals; totally imperfect set; base-base paracompact space; coarse base; Sorgenfrey irrationals; totally imperfect set
UR - http://eudml.org/doc/246244
ER -

References

top
  1. Arhangelskii, A. V., On the metrization of topological spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 8 (1960), 589-595 Russian 0125561. (1960) MR0125561
  2. Balogh, Z., Bennett, H., 10.1090/S0002-9939-1987-0911046-2, Proc. Amer. Math. Soc. 101 (1987), 753-760. (1987) Zbl0627.54016MR0911046DOI10.1090/S0002-9939-1987-0911046-2
  3. Caux, P. de, Yet another property of the Sorgenfrey plane, Topology Proc. 6 (1981), 31-43. (1981) MR0650479
  4. Corson, H. H., McMinn, T. J., Michael, E. A., Nagata, J., Bases and local finiteness, Notices Amer. Math. Soc. 6 (1959), 814 (abstract). (1959) 
  5. Corson, H. H., 10.4064/fm-49-2-143-145, Fund. Math. 49 (1960/1961), 143-145. (1960) MR0125430DOI10.4064/fm-49-2-143-145
  6. Curtis, D. W., 10.4064/fm-77-3-277-283, Fund. Math. 77 (1973), 277-283. (1973) Zbl0248.54022MR0321005DOI10.4064/fm-77-3-277-283
  7. Douwen, Eric K. van, Pfeffer, W., 10.2140/pjm.1979.81.371, Pacific J. Math. 81 (1979), 371-377. (1979) MR0547605DOI10.2140/pjm.1979.81.371
  8. Ford, R., Basic properties in dimension theory, Dissertation, Auburn University (1963). (1963) MR2613829
  9. Gerlits, J., Nagy, Zs., 10.1016/0166-8641(82)90065-7, Topol. Appl. 14 (1982), 151-161. (1982) Zbl0503.54020MR0667661DOI10.1016/0166-8641(82)90065-7
  10. Gruenhage, Gary, 10.1090/conm/533/10502, Contemporary Mathematics 533 (2011), 13-28. (2011) Zbl1217.54025MR2777743DOI10.1090/conm/533/10502
  11. Lelek, A., 10.1090/S0002-9939-1968-0219032-3, Proc. Amer. Math. Soc. 19 (1968), 168-170. (1968) Zbl0153.52602MR0219032DOI10.1090/S0002-9939-1968-0219032-3
  12. Lelek, A., 10.4064/fm-64-2-209-218, Fund. Math. 64 (1969), 209-218. (1969) Zbl0175.49603MR0242108DOI10.4064/fm-64-2-209-218
  13. O'Farrell, J. M., Some methods of determining total paracompactness, Diss., Auburn Univ. (1982). (1982) 
  14. O'Farrell, J. M., The Sorgenfrey line is not totally metacompact, Houston J. Math. 9 (1983), 271-273. (1983) Zbl0518.54020MR0703275
  15. O'Farrell, J. M., 10.4064/fm-127-1-41-43, Fund. Math. 127 (1987), 41-43. (1987) MR0883150DOI10.4064/fm-127-1-41-43
  16. Popvassilev, S. G., 10.1090/S0002-9939-04-07457-X, Proc. Amer. Math. Soc. 132 (2004), 3121-3130. (2004) Zbl1062.54022MR2063135DOI10.1090/S0002-9939-04-07457-X
  17. Popvassilev, S. G., Base-family paracompactness, Houston J. Math. 32 (2006), 459-469. (2006) Zbl1148.54008MR2219324
  18. Popvassilev, S. G., 10.1016/j.topol.2010.07.035, Topol. Appl. 157 (2010), 2553-2554. (2010) Zbl1200.54011MR2719398DOI10.1016/j.topol.2010.07.035
  19. Popvassilev, S. G., Base-base, base-cover and base-family paracompactness, Contributed Problems, Zoltán Balogh Memorial Topology Conference, Miami Univ., Oxford, Ohio, Nov. 15-16 (2002), 18-19. http://notch.mathstat.muohio.edu/balog_conference/all_prob.pdf. (2002) 
  20. Popvassilev, S. G., Problems by S. Popvassilev, Problems in General and Set-Theoretic Topology, 2004 Spring Topology and Dynamics Conference at the University of Alabama, Birmingham. http://www.auburn.edu/ {gruengf/confprobs.pdf}. 
  21. Porter, J. E., Generalizations of totally paracompact spaces, Diss., Auburn Univ. (2000). (2000) 
  22. Porter, J. E., 10.1016/S0166-8641(02)00109-8, Topol. Appl. 128 (2003), 145-156. (2003) Zbl1099.54021MR1956610DOI10.1016/S0166-8641(02)00109-8
  23. Porter, J. E., Strongly base-paracompact spaces, Comment. Math. Univ. Carolin. 44 (2003), 307-314. (2003) Zbl1099.54021MR2026165
  24. Rudin, M. E., Martin's axiom, Jon Barwise Handbook of mathematical logic, Studies in Logic and the Found. of Math. 90 North-Holland (1977), 491-501. (1977) MR0457132
  25. Sakai, M., 10.1090/S0002-9939-09-09887-6, Proc. Amer. Math. Soc. 137 (2009), 3129-3138. (2009) Zbl1182.03077MR2506472DOI10.1090/S0002-9939-09-09887-6
  26. Telgárski, R., Kok, H., 10.4064/fm-73-1-75-78, Fund. Math. 73 (1971/72), 75-78. (1971) MR0293585DOI10.4064/fm-73-1-75-78

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.