Base-base paracompactness and subsets of the Sorgenfrey line
Mathematica Bohemica (2012)
- Volume: 137, Issue: 4, page 395-401
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topPopvassilev, Strashimir G.. "Base-base paracompactness and subsets of the Sorgenfrey line." Mathematica Bohemica 137.4 (2012): 395-401. <http://eudml.org/doc/246244>.
@article{Popvassilev2012,
abstract = {A topological space $X$ is called base-base paracompact (John E. Porter) if it has an open base $\mathcal \{B\}$ such that every base $\{\mathcal \{B\}^\{\prime \} \subseteq \mathcal \{B\}\}$ has a locally finite subcover $\mathcal \{C\} \subseteq \mathcal \{B\}^\{\prime \}$. It is not known if every paracompact space is base-base paracompact. We study subspaces of the Sorgenfrey line (e.g. the irrationals, a Bernstein set) as a possible counterexample.},
author = {Popvassilev, Strashimir G.},
journal = {Mathematica Bohemica},
keywords = {base-base paracompact space; coarse base; Sorgenfrey irrationals; totally imperfect set; base-base paracompact space; coarse base; Sorgenfrey irrationals; totally imperfect set},
language = {eng},
number = {4},
pages = {395-401},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Base-base paracompactness and subsets of the Sorgenfrey line},
url = {http://eudml.org/doc/246244},
volume = {137},
year = {2012},
}
TY - JOUR
AU - Popvassilev, Strashimir G.
TI - Base-base paracompactness and subsets of the Sorgenfrey line
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 4
SP - 395
EP - 401
AB - A topological space $X$ is called base-base paracompact (John E. Porter) if it has an open base $\mathcal {B}$ such that every base ${\mathcal {B}^{\prime } \subseteq \mathcal {B}}$ has a locally finite subcover $\mathcal {C} \subseteq \mathcal {B}^{\prime }$. It is not known if every paracompact space is base-base paracompact. We study subspaces of the Sorgenfrey line (e.g. the irrationals, a Bernstein set) as a possible counterexample.
LA - eng
KW - base-base paracompact space; coarse base; Sorgenfrey irrationals; totally imperfect set; base-base paracompact space; coarse base; Sorgenfrey irrationals; totally imperfect set
UR - http://eudml.org/doc/246244
ER -
References
top- Arhangelskii, A. V., On the metrization of topological spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 8 (1960), 589-595 Russian 0125561. (1960) MR0125561
- Balogh, Z., Bennett, H., 10.1090/S0002-9939-1987-0911046-2, Proc. Amer. Math. Soc. 101 (1987), 753-760. (1987) Zbl0627.54016MR0911046DOI10.1090/S0002-9939-1987-0911046-2
- Caux, P. de, Yet another property of the Sorgenfrey plane, Topology Proc. 6 (1981), 31-43. (1981) MR0650479
- Corson, H. H., McMinn, T. J., Michael, E. A., Nagata, J., Bases and local finiteness, Notices Amer. Math. Soc. 6 (1959), 814 (abstract). (1959)
- Corson, H. H., 10.4064/fm-49-2-143-145, Fund. Math. 49 (1960/1961), 143-145. (1960) MR0125430DOI10.4064/fm-49-2-143-145
- Curtis, D. W., 10.4064/fm-77-3-277-283, Fund. Math. 77 (1973), 277-283. (1973) Zbl0248.54022MR0321005DOI10.4064/fm-77-3-277-283
- Douwen, Eric K. van, Pfeffer, W., 10.2140/pjm.1979.81.371, Pacific J. Math. 81 (1979), 371-377. (1979) MR0547605DOI10.2140/pjm.1979.81.371
- Ford, R., Basic properties in dimension theory, Dissertation, Auburn University (1963). (1963) MR2613829
- Gerlits, J., Nagy, Zs., 10.1016/0166-8641(82)90065-7, Topol. Appl. 14 (1982), 151-161. (1982) Zbl0503.54020MR0667661DOI10.1016/0166-8641(82)90065-7
- Gruenhage, Gary, 10.1090/conm/533/10502, Contemporary Mathematics 533 (2011), 13-28. (2011) Zbl1217.54025MR2777743DOI10.1090/conm/533/10502
- Lelek, A., 10.1090/S0002-9939-1968-0219032-3, Proc. Amer. Math. Soc. 19 (1968), 168-170. (1968) Zbl0153.52602MR0219032DOI10.1090/S0002-9939-1968-0219032-3
- Lelek, A., 10.4064/fm-64-2-209-218, Fund. Math. 64 (1969), 209-218. (1969) Zbl0175.49603MR0242108DOI10.4064/fm-64-2-209-218
- O'Farrell, J. M., Some methods of determining total paracompactness, Diss., Auburn Univ. (1982). (1982)
- O'Farrell, J. M., The Sorgenfrey line is not totally metacompact, Houston J. Math. 9 (1983), 271-273. (1983) Zbl0518.54020MR0703275
- O'Farrell, J. M., 10.4064/fm-127-1-41-43, Fund. Math. 127 (1987), 41-43. (1987) MR0883150DOI10.4064/fm-127-1-41-43
- Popvassilev, S. G., 10.1090/S0002-9939-04-07457-X, Proc. Amer. Math. Soc. 132 (2004), 3121-3130. (2004) Zbl1062.54022MR2063135DOI10.1090/S0002-9939-04-07457-X
- Popvassilev, S. G., Base-family paracompactness, Houston J. Math. 32 (2006), 459-469. (2006) Zbl1148.54008MR2219324
- Popvassilev, S. G., 10.1016/j.topol.2010.07.035, Topol. Appl. 157 (2010), 2553-2554. (2010) Zbl1200.54011MR2719398DOI10.1016/j.topol.2010.07.035
- Popvassilev, S. G., Base-base, base-cover and base-family paracompactness, Contributed Problems, Zoltán Balogh Memorial Topology Conference, Miami Univ., Oxford, Ohio, Nov. 15-16 (2002), 18-19. http://notch.mathstat.muohio.edu/balog_conference/all_prob.pdf. (2002)
- Popvassilev, S. G., Problems by S. Popvassilev, Problems in General and Set-Theoretic Topology, 2004 Spring Topology and Dynamics Conference at the University of Alabama, Birmingham. http://www.auburn.edu/ {gruengf/confprobs.pdf}.
- Porter, J. E., Generalizations of totally paracompact spaces, Diss., Auburn Univ. (2000). (2000)
- Porter, J. E., 10.1016/S0166-8641(02)00109-8, Topol. Appl. 128 (2003), 145-156. (2003) Zbl1099.54021MR1956610DOI10.1016/S0166-8641(02)00109-8
- Porter, J. E., Strongly base-paracompact spaces, Comment. Math. Univ. Carolin. 44 (2003), 307-314. (2003) Zbl1099.54021MR2026165
- Rudin, M. E., Martin's axiom, Jon Barwise Handbook of mathematical logic, Studies in Logic and the Found. of Math. 90 North-Holland (1977), 491-501. (1977) MR0457132
- Sakai, M., 10.1090/S0002-9939-09-09887-6, Proc. Amer. Math. Soc. 137 (2009), 3129-3138. (2009) Zbl1182.03077MR2506472DOI10.1090/S0002-9939-09-09887-6
- Telgárski, R., Kok, H., 10.4064/fm-73-1-75-78, Fund. Math. 73 (1971/72), 75-78. (1971) MR0293585DOI10.4064/fm-73-1-75-78
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.