Do finite Bruck loops behave like groups?

B. Baumeister

Commentationes Mathematicae Universitatis Carolinae (2012)

  • Volume: 53, Issue: 3, page 337-346
  • ISSN: 0010-2628

Abstract

top
This note contains Sylow's theorem, Lagrange's theorem and Hall's theorem for finite Bruck loops. Moreover, we explore the subloop structure of finite Bruck loops.

How to cite

top

Baumeister, B.. "Do finite Bruck loops behave like groups?." Commentationes Mathematicae Universitatis Carolinae 53.3 (2012): 337-346. <http://eudml.org/doc/246251>.

@article{Baumeister2012,
abstract = {This note contains Sylow's theorem, Lagrange's theorem and Hall's theorem for finite Bruck loops. Moreover, we explore the subloop structure of finite Bruck loops.},
author = {Baumeister, B.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {finite loops; finite Bruck loops; finite Bol loops; finite $A_r$-loops; classical theorems for finite loops; finite Bruck loops; finite Bol loops; Sylow theorem; Lagrange theorem; Hall theorem; Sylow subloops},
language = {eng},
number = {3},
pages = {337-346},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Do finite Bruck loops behave like groups?},
url = {http://eudml.org/doc/246251},
volume = {53},
year = {2012},
}

TY - JOUR
AU - Baumeister, B.
TI - Do finite Bruck loops behave like groups?
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 3
SP - 337
EP - 346
AB - This note contains Sylow's theorem, Lagrange's theorem and Hall's theorem for finite Bruck loops. Moreover, we explore the subloop structure of finite Bruck loops.
LA - eng
KW - finite loops; finite Bruck loops; finite Bol loops; finite $A_r$-loops; classical theorems for finite loops; finite Bruck loops; finite Bol loops; Sylow theorem; Lagrange theorem; Hall theorem; Sylow subloops
UR - http://eudml.org/doc/246251
ER -

References

top
  1. Albert A.A., 10.1090/S0002-9947-1943-0009962-7, Trans. Amer. Math. Soc. 54 (1943), 507–519. Zbl0063.00039MR0009962DOI10.1090/S0002-9947-1943-0009962-7
  2. Aschbacher M., Finite Group Theory, Cambridge University Press, Cambridge, 1986. Zbl0997.20001MR0895134
  3. Aschbacher M., 10.1016/j.jalgebra.2005.03.005, J. Algebra 288 (2005), 99–136. Zbl1090.20037MR2138373DOI10.1016/j.jalgebra.2005.03.005
  4. Aschbacher M., Kinyon M., Phillips J.D., 10.1090/S0002-9947-05-03778-5, Trans. Amer. Math. Soc. 358 (2006), no. 7, 3061–3075. Zbl1102.20046MR2216258DOI10.1090/S0002-9947-05-03778-5
  5. Baer R., Nets and groups, Trans. Amer. Math. Soc 47 (1939), 110–141. Zbl0023.21502MR0000035
  6. Baer R., 10.2307/2371960, Amer. J. Math. 67 (1945), 450–460. Zbl0063.00166MR0012302DOI10.2307/2371960
  7. Bol G., 10.1007/BF01594185, Math. Ann. 114 (1937), 414–431. Zbl0016.22603MR1513147DOI10.1007/BF01594185
  8. Baumeister B., Stein A., Self-invariant 1 -factorizations of complete graphs and finite Bol loops of exponent 2 , Beiträge Algebra Geom. 51 (2010), no. 1, 117–135. Zbl1208.20064MR2650481
  9. Baumeister B., Stein A., 10.1016/j.jalgebra.2010.11.017, J. Algebra 330 (2011), 206–220. Zbl1235.20059MR2774625DOI10.1016/j.jalgebra.2010.11.017
  10. Baumeister B., Stein A., Stroth G., 10.1016/j.jalgebra.2010.10.033, J. Algebra 327 (2011), 316–336. Zbl1233.20059MR2746041DOI10.1016/j.jalgebra.2010.10.033
  11. Bruck R.H., A survey of binary systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 20, Reihe: Gruppentheorie, Springer, Berlin-Göttingen-Heidelberg, 1958. Zbl0141.01401MR0093552
  12. Burn R.P., 10.1017/S0305004100055213, Math. Proc. Cambridge Philos. Soc. 84 (1978), 377–385. Zbl0571.20069MR0492030DOI10.1017/S0305004100055213
  13. Gagola S.M., III, How and why Moufang loops behave like groups, Quasigroups Related Systems 19 (2011), 1–22. MR2850316
  14. Glauberman G., 10.1016/0021-8693(64)90017-1, J. Algebra 1 (1964), 374–396. Zbl0155.03901MR0175991DOI10.1016/0021-8693(64)90017-1
  15. Glauberman G., 10.1016/0021-8693(68)90050-1, J. Algebra 8 (1968), 393–414. Zbl0155.03901MR0222198DOI10.1016/0021-8693(68)90050-1
  16. Jedlička P., Kinyon M.K., Vojtěchovský P., 10.1090/S0002-9947-2010-05088-3, Trans. Amer. Math. Soc. 363 (2011), 365–384. Zbl1215.20060MR2719686DOI10.1090/S0002-9947-2010-05088-3
  17. Johnson K.W., Kinyon M.K., Nagy G.P., Vojtěchovský P., 10.1112/S1461157010000173, LMS J. Comput. Math. 14 (2011), 200–213. Zbl1225.20052MR2831230DOI10.1112/S1461157010000173
  18. Nagy G.P., 10.1080/00927879808826146, Comm. Algebra 26 (1998), no. 1, 549–555. Zbl0895.20054MR1604103DOI10.1080/00927879808826146
  19. Nagy G.P., 10.1007/s00229-008-0188-5, Manuscripta Math. 127 (2008), no. 1, 81–88. Zbl1167.20038MR2429915DOI10.1007/s00229-008-0188-5
  20. Nagy G.P., 10.1090/S0002-9947-09-04646-7, Trans. Amer. Math. Soc. 361 (2009), 5331–5343. MR2515813DOI10.1090/S0002-9947-09-04646-7
  21. Nagy G.P., Finite simple left Bol loops 
  22. Smiley M.F., 10.1090/S0002-9904-1944-08237-2, Bull. Amer. Math. Soc. 21 (1944), 782–786. Zbl0063.07085MR0011312DOI10.1090/S0002-9904-1944-08237-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.