Do finite Bruck loops behave like groups?
Commentationes Mathematicae Universitatis Carolinae (2012)
- Volume: 53, Issue: 3, page 337-346
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBaumeister, B.. "Do finite Bruck loops behave like groups?." Commentationes Mathematicae Universitatis Carolinae 53.3 (2012): 337-346. <http://eudml.org/doc/246251>.
@article{Baumeister2012,
abstract = {This note contains Sylow's theorem, Lagrange's theorem and Hall's theorem for finite Bruck loops. Moreover, we explore the subloop structure of finite Bruck loops.},
author = {Baumeister, B.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {finite loops; finite Bruck loops; finite Bol loops; finite $A_r$-loops; classical theorems for finite loops; finite Bruck loops; finite Bol loops; Sylow theorem; Lagrange theorem; Hall theorem; Sylow subloops},
language = {eng},
number = {3},
pages = {337-346},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Do finite Bruck loops behave like groups?},
url = {http://eudml.org/doc/246251},
volume = {53},
year = {2012},
}
TY - JOUR
AU - Baumeister, B.
TI - Do finite Bruck loops behave like groups?
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 3
SP - 337
EP - 346
AB - This note contains Sylow's theorem, Lagrange's theorem and Hall's theorem for finite Bruck loops. Moreover, we explore the subloop structure of finite Bruck loops.
LA - eng
KW - finite loops; finite Bruck loops; finite Bol loops; finite $A_r$-loops; classical theorems for finite loops; finite Bruck loops; finite Bol loops; Sylow theorem; Lagrange theorem; Hall theorem; Sylow subloops
UR - http://eudml.org/doc/246251
ER -
References
top- Albert A.A., 10.1090/S0002-9947-1943-0009962-7, Trans. Amer. Math. Soc. 54 (1943), 507–519. Zbl0063.00039MR0009962DOI10.1090/S0002-9947-1943-0009962-7
- Aschbacher M., Finite Group Theory, Cambridge University Press, Cambridge, 1986. Zbl0997.20001MR0895134
- Aschbacher M., 10.1016/j.jalgebra.2005.03.005, J. Algebra 288 (2005), 99–136. Zbl1090.20037MR2138373DOI10.1016/j.jalgebra.2005.03.005
- Aschbacher M., Kinyon M., Phillips J.D., 10.1090/S0002-9947-05-03778-5, Trans. Amer. Math. Soc. 358 (2006), no. 7, 3061–3075. Zbl1102.20046MR2216258DOI10.1090/S0002-9947-05-03778-5
- Baer R., Nets and groups, Trans. Amer. Math. Soc 47 (1939), 110–141. Zbl0023.21502MR0000035
- Baer R., 10.2307/2371960, Amer. J. Math. 67 (1945), 450–460. Zbl0063.00166MR0012302DOI10.2307/2371960
- Bol G., 10.1007/BF01594185, Math. Ann. 114 (1937), 414–431. Zbl0016.22603MR1513147DOI10.1007/BF01594185
- Baumeister B., Stein A., Self-invariant -factorizations of complete graphs and finite Bol loops of exponent , Beiträge Algebra Geom. 51 (2010), no. 1, 117–135. Zbl1208.20064MR2650481
- Baumeister B., Stein A., 10.1016/j.jalgebra.2010.11.017, J. Algebra 330 (2011), 206–220. Zbl1235.20059MR2774625DOI10.1016/j.jalgebra.2010.11.017
- Baumeister B., Stein A., Stroth G., 10.1016/j.jalgebra.2010.10.033, J. Algebra 327 (2011), 316–336. Zbl1233.20059MR2746041DOI10.1016/j.jalgebra.2010.10.033
- Bruck R.H., A survey of binary systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 20, Reihe: Gruppentheorie, Springer, Berlin-Göttingen-Heidelberg, 1958. Zbl0141.01401MR0093552
- Burn R.P., 10.1017/S0305004100055213, Math. Proc. Cambridge Philos. Soc. 84 (1978), 377–385. Zbl0571.20069MR0492030DOI10.1017/S0305004100055213
- Gagola S.M., III, How and why Moufang loops behave like groups, Quasigroups Related Systems 19 (2011), 1–22. MR2850316
- Glauberman G., 10.1016/0021-8693(64)90017-1, J. Algebra 1 (1964), 374–396. Zbl0155.03901MR0175991DOI10.1016/0021-8693(64)90017-1
- Glauberman G., 10.1016/0021-8693(68)90050-1, J. Algebra 8 (1968), 393–414. Zbl0155.03901MR0222198DOI10.1016/0021-8693(68)90050-1
- Jedlička P., Kinyon M.K., Vojtěchovský P., 10.1090/S0002-9947-2010-05088-3, Trans. Amer. Math. Soc. 363 (2011), 365–384. Zbl1215.20060MR2719686DOI10.1090/S0002-9947-2010-05088-3
- Johnson K.W., Kinyon M.K., Nagy G.P., Vojtěchovský P., 10.1112/S1461157010000173, LMS J. Comput. Math. 14 (2011), 200–213. Zbl1225.20052MR2831230DOI10.1112/S1461157010000173
- Nagy G.P., 10.1080/00927879808826146, Comm. Algebra 26 (1998), no. 1, 549–555. Zbl0895.20054MR1604103DOI10.1080/00927879808826146
- Nagy G.P., 10.1007/s00229-008-0188-5, Manuscripta Math. 127 (2008), no. 1, 81–88. Zbl1167.20038MR2429915DOI10.1007/s00229-008-0188-5
- Nagy G.P., 10.1090/S0002-9947-09-04646-7, Trans. Amer. Math. Soc. 361 (2009), 5331–5343. MR2515813DOI10.1090/S0002-9947-09-04646-7
- Nagy G.P., Finite simple left Bol loops
- Smiley M.F., 10.1090/S0002-9904-1944-08237-2, Bull. Amer. Math. Soc. 21 (1944), 782–786. Zbl0063.07085MR0011312DOI10.1090/S0002-9904-1944-08237-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.