On the existence of generalized quasi-Einstein manifolds
Uday Chand De; Sahanous Mallick
Archivum Mathematicum (2011)
- Volume: 047, Issue: 4, page 279-291
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topDe, Uday Chand, and Mallick, Sahanous. "On the existence of generalized quasi-Einstein manifolds." Archivum Mathematicum 047.4 (2011): 279-291. <http://eudml.org/doc/246267>.
@article{De2011,
abstract = {The object of the present paper is to study a type of Riemannian manifold called generalized quasi-Einstein manifold. The existence of a generalized quasi-Einstein manifold have been proved by non-trivial examples.},
author = {De, Uday Chand, Mallick, Sahanous},
journal = {Archivum Mathematicum},
keywords = {quasi-Einstein manifolds; generalized quasi-Einstein manifold; manifold of generalized quasi-constant curvature; manifold of quasi-constant curvature; quasi-Einstein manifold; generalized quasi-Einstein manifold; manifold of generalized quasi-constant curvature},
language = {eng},
number = {4},
pages = {279-291},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the existence of generalized quasi-Einstein manifolds},
url = {http://eudml.org/doc/246267},
volume = {047},
year = {2011},
}
TY - JOUR
AU - De, Uday Chand
AU - Mallick, Sahanous
TI - On the existence of generalized quasi-Einstein manifolds
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 4
SP - 279
EP - 291
AB - The object of the present paper is to study a type of Riemannian manifold called generalized quasi-Einstein manifold. The existence of a generalized quasi-Einstein manifold have been proved by non-trivial examples.
LA - eng
KW - quasi-Einstein manifolds; generalized quasi-Einstein manifold; manifold of generalized quasi-constant curvature; manifold of quasi-constant curvature; quasi-Einstein manifold; generalized quasi-Einstein manifold; manifold of generalized quasi-constant curvature
UR - http://eudml.org/doc/246267
ER -
References
top- Bejan, C., Binh, T. Q., Generalized Einstein manifolds, WSPC–Proceeding Trim Size, dga 2007, 2007, pp. 47–54. (2007)
- Besse, A. L., Einstein manifolds, Ergeb. Math. Grenzgeb., 3. Folge, Bd. 10, Springer–Verlag, Berlin, Heidelberg, New York, 1987. (1987) Zbl0613.53001MR0867684
- Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Birkhauser, Boston, 2002. (2002) Zbl1011.53001MR1874240
- Chaki, M. C., On generalized quasi–Einstein manifolds, Publ. Math. Debrecen 58 (2001), 683–691. (2001) Zbl1062.53035MR1828719
- Chaki, M. C., On super quasi–Einstein manifolds, Publ. Math. Debrecen 64 (2004), 481–488. (2004) Zbl1093.53045MR2059079
- Chaki, M. C., Maity, R. K., On quasi–Einstein manifolds, Publ. Math. Debrecen 57 (2000), 297–306. (2000) Zbl0968.53030MR1798715
- Chen, B. Y., Geometry of submanifolds, Marcel Dekker. Inc., New York, 1973. (1973) Zbl0262.53036MR0353212
- Chen, B. Y., Geometry of submanifolds and its applications, Science University of Tokyo, 1981. (1981) Zbl0474.53050MR0627323
- Chen, B. Y., Yano, K., Hypersurfaces of a conformally flat space, Tensor N. S. 26 (1972), 318–322. (1972) Zbl0257.53027MR0331283
- Das, Lovejoy, On generalized –quasi–Einstein manifolds, preprint. Zbl1159.53325
- De, U. C., Gazi, A. K., On nearly quasi–Einstein manifolds, Novi Sad J. Math. 38 (2) (2008), 115–121. (2008) MR2526034
- De, U. C., Ghosh, G. C., On generalized quasi–Einstein manifolds, Kyungpook Math. J. 44 (2004), 607–615. (2004) Zbl1076.53509MR2108466
- De, U. C., Ghosh, G. C., On quasi–Einstein and special quasi–Einstein manifolds, Proc. of the Int. Conf. of Mathematics and its Applications, Kuwait University, April 5–7, 2004, 2004, pp. 178–191. (2004) MR2143298
- Deszcz, R., Hotlos, M., Senturk, Z., On curvature properties of quasi–Einstein hypersurfaces in semi–Euclidean spaces, Soochow J. Math. 27 (2001), 375–389. (2001) Zbl1008.53020MR1867806
- Mocanu, A. L., Les variétés à courbure quasi-constante de type Vranceanu (French), rench), Proceedings of the National Conference on Geometry and Topology (1986), Univ. Bucureşti, Bucharest, 1988, Manifolds with quasiconstant curvature of Vranceanu type, pp. 163–168. (1988) MR0980015
- Muelemeester, W. De, Verstraelen, L., Codimension 2 submanifolds with 2–quasi–umbilical normal direction, J. Korean Math. Soc. 15 (1979), 101–108. (1979)
- Patterson, E. M., Some theorems on Ricci–recurrent spaces, J. London Math. Soc. 27 (1952), 2887–295. (1952) Zbl0048.15604MR0048891
- Shaikh, A. A., 10.1007/s10998-009-0119-6, Periodica Mathematica Hungarica 59 (2) (2009), 119–146. (2009) Zbl1224.53029MR2587857DOI10.1007/s10998-009-0119-6
- Tamassay, L., Binh, T. Q., On weak symmetries of Einstein and Sasakian manifolds, Tensor N. S. 53 (1993), 140–148. (1993) MR1455411
- Vranceanu, Gh., Lecons des Geometrie Differential, Ed. de L'Academie, vol. 4, Bucharest, 1968. (1968)
- Yano, K., Sawaki, S., Riemannian manifolds admitting a conformal transformation group, J. Differential Geom. 2 (1968), 161–184. (1968) Zbl0167.19802MR0233314
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.