On the existence of generalized quasi-Einstein manifolds

Uday Chand De; Sahanous Mallick

Archivum Mathematicum (2011)

  • Volume: 047, Issue: 4, page 279-291
  • ISSN: 0044-8753

Abstract

top
The object of the present paper is to study a type of Riemannian manifold called generalized quasi-Einstein manifold. The existence of a generalized quasi-Einstein manifold have been proved by non-trivial examples.

How to cite

top

De, Uday Chand, and Mallick, Sahanous. "On the existence of generalized quasi-Einstein manifolds." Archivum Mathematicum 047.4 (2011): 279-291. <http://eudml.org/doc/246267>.

@article{De2011,
abstract = {The object of the present paper is to study a type of Riemannian manifold called generalized quasi-Einstein manifold. The existence of a generalized quasi-Einstein manifold have been proved by non-trivial examples.},
author = {De, Uday Chand, Mallick, Sahanous},
journal = {Archivum Mathematicum},
keywords = {quasi-Einstein manifolds; generalized quasi-Einstein manifold; manifold of generalized quasi-constant curvature; manifold of quasi-constant curvature; quasi-Einstein manifold; generalized quasi-Einstein manifold; manifold of generalized quasi-constant curvature},
language = {eng},
number = {4},
pages = {279-291},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the existence of generalized quasi-Einstein manifolds},
url = {http://eudml.org/doc/246267},
volume = {047},
year = {2011},
}

TY - JOUR
AU - De, Uday Chand
AU - Mallick, Sahanous
TI - On the existence of generalized quasi-Einstein manifolds
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 4
SP - 279
EP - 291
AB - The object of the present paper is to study a type of Riemannian manifold called generalized quasi-Einstein manifold. The existence of a generalized quasi-Einstein manifold have been proved by non-trivial examples.
LA - eng
KW - quasi-Einstein manifolds; generalized quasi-Einstein manifold; manifold of generalized quasi-constant curvature; manifold of quasi-constant curvature; quasi-Einstein manifold; generalized quasi-Einstein manifold; manifold of generalized quasi-constant curvature
UR - http://eudml.org/doc/246267
ER -

References

top
  1. Bejan, C., Binh, T. Q., Generalized Einstein manifolds, WSPC–Proceeding Trim Size, dga 2007, 2007, pp. 47–54. (2007) 
  2. Besse, A. L., Einstein manifolds, Ergeb. Math. Grenzgeb., 3. Folge, Bd. 10, Springer–Verlag, Berlin, Heidelberg, New York, 1987. (1987) Zbl0613.53001MR0867684
  3. Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Birkhauser, Boston, 2002. (2002) Zbl1011.53001MR1874240
  4. Chaki, M. C., On generalized quasi–Einstein manifolds, Publ. Math. Debrecen 58 (2001), 683–691. (2001) Zbl1062.53035MR1828719
  5. Chaki, M. C., On super quasi–Einstein manifolds, Publ. Math. Debrecen 64 (2004), 481–488. (2004) Zbl1093.53045MR2059079
  6. Chaki, M. C., Maity, R. K., On quasi–Einstein manifolds, Publ. Math. Debrecen 57 (2000), 297–306. (2000) Zbl0968.53030MR1798715
  7. Chen, B. Y., Geometry of submanifolds, Marcel Dekker. Inc., New York, 1973. (1973) Zbl0262.53036MR0353212
  8. Chen, B. Y., Geometry of submanifolds and its applications, Science University of Tokyo, 1981. (1981) Zbl0474.53050MR0627323
  9. Chen, B. Y., Yano, K., Hypersurfaces of a conformally flat space, Tensor N. S. 26 (1972), 318–322. (1972) Zbl0257.53027MR0331283
  10. Das, Lovejoy, On generalized p –quasi–Einstein manifolds, preprint. Zbl1159.53325
  11. De, U. C., Gazi, A. K., On nearly quasi–Einstein manifolds, Novi Sad J. Math. 38 (2) (2008), 115–121. (2008) MR2526034
  12. De, U. C., Ghosh, G. C., On generalized quasi–Einstein manifolds, Kyungpook Math. J. 44 (2004), 607–615. (2004) Zbl1076.53509MR2108466
  13. De, U. C., Ghosh, G. C., On quasi–Einstein and special quasi–Einstein manifolds, Proc. of the Int. Conf. of Mathematics and its Applications, Kuwait University, April 5–7, 2004, 2004, pp. 178–191. (2004) MR2143298
  14. Deszcz, R., Hotlos, M., Senturk, Z., On curvature properties of quasi–Einstein hypersurfaces in semi–Euclidean spaces, Soochow J. Math. 27 (2001), 375–389. (2001) Zbl1008.53020MR1867806
  15. Mocanu, A. L., Les variétés à courbure quasi-constante de type Vranceanu (French), rench), Proceedings of the National Conference on Geometry and Topology (1986), Univ. Bucureşti, Bucharest, 1988, Manifolds with quasiconstant curvature of Vranceanu type, pp. 163–168. (1988) MR0980015
  16. Muelemeester, W. De, Verstraelen, L., Codimension 2 submanifolds with 2–quasi–umbilical normal direction, J. Korean Math. Soc. 15 (1979), 101–108. (1979) 
  17. Patterson, E. M., Some theorems on Ricci–recurrent spaces, J. London Math. Soc. 27 (1952), 2887–295. (1952) Zbl0048.15604MR0048891
  18. Shaikh, A. A., 10.1007/s10998-009-0119-6, Periodica Mathematica Hungarica 59 (2) (2009), 119–146. (2009) Zbl1224.53029MR2587857DOI10.1007/s10998-009-0119-6
  19. Tamassay, L., Binh, T. Q., On weak symmetries of Einstein and Sasakian manifolds, Tensor N. S. 53 (1993), 140–148. (1993) MR1455411
  20. Vranceanu, Gh., Lecons des Geometrie Differential, Ed. de L'Academie, vol. 4, Bucharest, 1968. (1968) 
  21. Yano, K., Sawaki, S., Riemannian manifolds admitting a conformal transformation group, J. Differential Geom. 2 (1968), 161–184. (1968) Zbl0167.19802MR0233314

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.