Disconnectedness properties of hyperspaces
Rodrigo Hernández-Gutiérrez; Angel Tamariz-Mascarúa
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 4, page 569-591
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHernández-Gutiérrez, Rodrigo, and Tamariz-Mascarúa, Angel. "Disconnectedness properties of hyperspaces." Commentationes Mathematicae Universitatis Carolinae 52.4 (2011): 569-591. <http://eudml.org/doc/246289>.
@article{Hernández2011,
abstract = {Let $X$ be a Hausdorff space and let $\mathcal \{H\}$ be one of the hyperspaces $CL(X)$, $\mathcal \{K\}(X)$, $\mathcal \{F\}(X)$ or $\mathcal \{F\}_n(X)$ ($n$ a positive integer) with the Vietoris topology. We study the following disconnectedness properties for $\mathcal \{H\}$: extremal disconnectedness, being a $F^\{\prime \}$-space, $P$-space or weak $P$-space and hereditary disconnectedness. Our main result states: if $X$ is Hausdorff and $F\subset X$ is a closed subset such that (a) both $F$ and $X-F$ are totally disconnected, (b) the quotient $X/F$ is hereditarily disconnected, then $\mathcal \{K\}(X)$ is hereditarily disconnected. We also show an example proving that this result cannot be reversed.},
author = {Hernández-Gutiérrez, Rodrigo, Tamariz-Mascarúa, Angel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {hyperspaces; Vietoris topology; $F^\{\prime \}$-space; $P$-space; hereditarily disconnected; hyperspace; Vietoris topology; -space; -space; hereditary disconnectedness},
language = {eng},
number = {4},
pages = {569-591},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Disconnectedness properties of hyperspaces},
url = {http://eudml.org/doc/246289},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Hernández-Gutiérrez, Rodrigo
AU - Tamariz-Mascarúa, Angel
TI - Disconnectedness properties of hyperspaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 4
SP - 569
EP - 591
AB - Let $X$ be a Hausdorff space and let $\mathcal {H}$ be one of the hyperspaces $CL(X)$, $\mathcal {K}(X)$, $\mathcal {F}(X)$ or $\mathcal {F}_n(X)$ ($n$ a positive integer) with the Vietoris topology. We study the following disconnectedness properties for $\mathcal {H}$: extremal disconnectedness, being a $F^{\prime }$-space, $P$-space or weak $P$-space and hereditary disconnectedness. Our main result states: if $X$ is Hausdorff and $F\subset X$ is a closed subset such that (a) both $F$ and $X-F$ are totally disconnected, (b) the quotient $X/F$ is hereditarily disconnected, then $\mathcal {K}(X)$ is hereditarily disconnected. We also show an example proving that this result cannot be reversed.
LA - eng
KW - hyperspaces; Vietoris topology; $F^{\prime }$-space; $P$-space; hereditarily disconnected; hyperspace; Vietoris topology; -space; -space; hereditary disconnectedness
UR - http://eudml.org/doc/246289
ER -
References
top- Dijkstra J.J., A criterion for Erdös spaces, Proc. Edinburgh Math. Soc. (2) 48 (2005), no. 3, 595–601. Zbl1152.54347MR2171187
- Engelking R., General Topology, translated from the Polish by the author, second edition, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
- Engelking R., Theory of Dimensions Finite and Infinite, Sigma Series in Pure Mathematics, 10, Heldermann, Lemgo, 1995. Zbl0872.54002MR1363947
- Erdös P., 10.2307/1968851, Ann. of Math. (2) 41 (1940), 734–736. MR0003191DOI10.2307/1968851
- Gillman L., Henriksen M., 10.1090/S0002-9947-1956-0078980-4, Trans. Amer. Math. Soc. 82 (1956), 366–391. Zbl0073.09201MR0078980DOI10.1090/S0002-9947-1956-0078980-4
- Illanes A., Nadler S.B., Jr., Hyperspaces. Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, Inc., New York, 1999. Zbl0933.54009MR1670250
- Keesling J., 10.2140/pjm.1970.33.657, Pacific J. Math. 33, 1970, 657–667. Zbl0182.25401MR0267516DOI10.2140/pjm.1970.33.657
- Kunen K., Weak -points in , Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978), pp. 741–749, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980. Zbl0435.54021MR0588822
- Michael E., 10.1090/S0002-9947-1951-0042109-4, Trans. Amer. Math. Soc. 71, (1951), 152–182. Zbl0043.37902MR0042109DOI10.1090/S0002-9947-1951-0042109-4
- Pol E., Pol R., A few remarks on connected sets in hyperspaces of hereditarily disconnected spaces, Bol. Soc. Mat. Mexicana (3) 6 (2000), no. 2, 243–245. MR1810852
- Porter J.R., Woods R.G., Extensions and Absolutes of Hausdorff Spaces, Springer, New York, 1988. Zbl0652.54016MR0918341
- Shakhmatov D.B., 10.1016/0166-8641(86)90004-0, Topology Appl. 22 (1986), no. 2, 139–144. Zbl0586.54020MR0836321DOI10.1016/0166-8641(86)90004-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.