Disconnectedness properties of hyperspaces

Rodrigo Hernández-Gutiérrez; Angel Tamariz-Mascarúa

Commentationes Mathematicae Universitatis Carolinae (2011)

  • Volume: 52, Issue: 4, page 569-591
  • ISSN: 0010-2628

Abstract

top
Let X be a Hausdorff space and let be one of the hyperspaces C L ( X ) , 𝒦 ( X ) , ( X ) or n ( X ) ( n a positive integer) with the Vietoris topology. We study the following disconnectedness properties for : extremal disconnectedness, being a F ' -space, P -space or weak P -space and hereditary disconnectedness. Our main result states: if X is Hausdorff and F X is a closed subset such that (a) both F and X - F are totally disconnected, (b) the quotient X / F is hereditarily disconnected, then 𝒦 ( X ) is hereditarily disconnected. We also show an example proving that this result cannot be reversed.

How to cite

top

Hernández-Gutiérrez, Rodrigo, and Tamariz-Mascarúa, Angel. "Disconnectedness properties of hyperspaces." Commentationes Mathematicae Universitatis Carolinae 52.4 (2011): 569-591. <http://eudml.org/doc/246289>.

@article{Hernández2011,
abstract = {Let $X$ be a Hausdorff space and let $\mathcal \{H\}$ be one of the hyperspaces $CL(X)$, $\mathcal \{K\}(X)$, $\mathcal \{F\}(X)$ or $\mathcal \{F\}_n(X)$ ($n$ a positive integer) with the Vietoris topology. We study the following disconnectedness properties for $\mathcal \{H\}$: extremal disconnectedness, being a $F^\{\prime \}$-space, $P$-space or weak $P$-space and hereditary disconnectedness. Our main result states: if $X$ is Hausdorff and $F\subset X$ is a closed subset such that (a) both $F$ and $X-F$ are totally disconnected, (b) the quotient $X/F$ is hereditarily disconnected, then $\mathcal \{K\}(X)$ is hereditarily disconnected. We also show an example proving that this result cannot be reversed.},
author = {Hernández-Gutiérrez, Rodrigo, Tamariz-Mascarúa, Angel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {hyperspaces; Vietoris topology; $F^\{\prime \}$-space; $P$-space; hereditarily disconnected; hyperspace; Vietoris topology; -space; -space; hereditary disconnectedness},
language = {eng},
number = {4},
pages = {569-591},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Disconnectedness properties of hyperspaces},
url = {http://eudml.org/doc/246289},
volume = {52},
year = {2011},
}

TY - JOUR
AU - Hernández-Gutiérrez, Rodrigo
AU - Tamariz-Mascarúa, Angel
TI - Disconnectedness properties of hyperspaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 4
SP - 569
EP - 591
AB - Let $X$ be a Hausdorff space and let $\mathcal {H}$ be one of the hyperspaces $CL(X)$, $\mathcal {K}(X)$, $\mathcal {F}(X)$ or $\mathcal {F}_n(X)$ ($n$ a positive integer) with the Vietoris topology. We study the following disconnectedness properties for $\mathcal {H}$: extremal disconnectedness, being a $F^{\prime }$-space, $P$-space or weak $P$-space and hereditary disconnectedness. Our main result states: if $X$ is Hausdorff and $F\subset X$ is a closed subset such that (a) both $F$ and $X-F$ are totally disconnected, (b) the quotient $X/F$ is hereditarily disconnected, then $\mathcal {K}(X)$ is hereditarily disconnected. We also show an example proving that this result cannot be reversed.
LA - eng
KW - hyperspaces; Vietoris topology; $F^{\prime }$-space; $P$-space; hereditarily disconnected; hyperspace; Vietoris topology; -space; -space; hereditary disconnectedness
UR - http://eudml.org/doc/246289
ER -

References

top
  1. Dijkstra J.J., A criterion for Erdös spaces, Proc. Edinburgh Math. Soc. (2) 48 (2005), no. 3, 595–601. Zbl1152.54347MR2171187
  2. Engelking R., General Topology, translated from the Polish by the author, second edition, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
  3. Engelking R., Theory of Dimensions Finite and Infinite, Sigma Series in Pure Mathematics, 10, Heldermann, Lemgo, 1995. Zbl0872.54002MR1363947
  4. Erdös P., 10.2307/1968851, Ann. of Math. (2) 41 (1940), 734–736. MR0003191DOI10.2307/1968851
  5. Gillman L., Henriksen M., 10.1090/S0002-9947-1956-0078980-4, Trans. Amer. Math. Soc. 82 (1956), 366–391. Zbl0073.09201MR0078980DOI10.1090/S0002-9947-1956-0078980-4
  6. Illanes A., Nadler S.B., Jr., Hyperspaces. Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, Inc., New York, 1999. Zbl0933.54009MR1670250
  7. Keesling J., 10.2140/pjm.1970.33.657, Pacific J. Math. 33, 1970, 657–667. Zbl0182.25401MR0267516DOI10.2140/pjm.1970.33.657
  8. Kunen K., Weak P -points in N * , Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978), pp. 741–749, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980. Zbl0435.54021MR0588822
  9. Michael E., 10.1090/S0002-9947-1951-0042109-4, Trans. Amer. Math. Soc. 71, (1951), 152–182. Zbl0043.37902MR0042109DOI10.1090/S0002-9947-1951-0042109-4
  10. Pol E., Pol R., A few remarks on connected sets in hyperspaces of hereditarily disconnected spaces, Bol. Soc. Mat. Mexicana (3) 6 (2000), no. 2, 243–245. MR1810852
  11. Porter J.R., Woods R.G., Extensions and Absolutes of Hausdorff Spaces, Springer, New York, 1988. Zbl0652.54016MR0918341
  12. Shakhmatov D.B., 10.1016/0166-8641(86)90004-0, Topology Appl. 22 (1986), no. 2, 139–144. Zbl0586.54020MR0836321DOI10.1016/0166-8641(86)90004-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.