On finite commutative IP-loops with elementary abelian inner mapping groups of order p 4

Markku Niemenmaa

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 4, page 559-563
  • ISSN: 0010-2628

Abstract

top
We show that finite commutative inverse property loops with elementary abelian inner mapping groups of order p 4 are centrally nilpotent of class at most two.

How to cite

top

Niemenmaa, Markku. "On finite commutative IP-loops with elementary abelian inner mapping groups of order $p^4$." Commentationes Mathematicae Universitatis Carolinae 51.4 (2010): 559-563. <http://eudml.org/doc/246340>.

@article{Niemenmaa2010,
abstract = {We show that finite commutative inverse property loops with elementary abelian inner mapping groups of order $p^4$ are centrally nilpotent of class at most two.},
author = {Niemenmaa, Markku},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {loop; inner mapping group; finite commutative inverse property loops; inner mapping groups; centrally nilpotent loops; multiplication groups; connected transversals},
language = {eng},
number = {4},
pages = {559-563},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On finite commutative IP-loops with elementary abelian inner mapping groups of order $p^4$},
url = {http://eudml.org/doc/246340},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Niemenmaa, Markku
TI - On finite commutative IP-loops with elementary abelian inner mapping groups of order $p^4$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 4
SP - 559
EP - 563
AB - We show that finite commutative inverse property loops with elementary abelian inner mapping groups of order $p^4$ are centrally nilpotent of class at most two.
LA - eng
KW - loop; inner mapping group; finite commutative inverse property loops; inner mapping groups; centrally nilpotent loops; multiplication groups; connected transversals
UR - http://eudml.org/doc/246340
ER -

References

top
  1. Bruck R.H., Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245–354. (1946) Zbl0061.02201MR0017288
  2. Csörgö P., 10.1007/s00013-006-1379-5, Arch. Math. (Basel) 86 (2006), 6 499–516. (2006) Zbl1113.20055MR2241599DOI10.1007/s00013-006-1379-5
  3. Csörgö P., 10.1016/j.ejc.2005.12.002, European J. Combin. 28 (2007), 3 858–867. (2007) Zbl1149.20053MR2300766DOI10.1016/j.ejc.2005.12.002
  4. Drápal A., Vojtěchovský P., 10.1016/j.ejc.2007.10.001, European J. Combin. 29 (2008), 7 1662–1681. (2008) Zbl1168.20031MR2431758DOI10.1016/j.ejc.2007.10.001
  5. Kepka T., Niemenmaa M., 10.1016/0021-8693(90)90152-E, J. Algebra 135 (1990), 112–122. (1990) Zbl0706.20046MR1076080DOI10.1016/0021-8693(90)90152-E
  6. Kepka T., Niemenmaa M., 10.1112/blms/24.4.343, Bull. London Math. Soc. 24 (1992), 343–346. (1992) Zbl0793.20064MR1165376DOI10.1112/blms/24.4.343
  7. Kepka T., Niemenmaa M., 10.1017/S0004972700016166, Bull. Australian Math. Soc. 49 (1994), 121–128. (1994) Zbl0799.20020MR1262682DOI10.1017/S0004972700016166
  8. Kinyon M., private communication, 2009. 
  9. Niemenmaa M., 10.1017/S0004972700038491, Bull. Australian Math. Soc. 71 (2005), 487–492. (2005) Zbl1080.20061MR2150938DOI10.1017/S0004972700038491
  10. Niemenmaa M., Rytty M., Connected transversals and multiplication groups of loops, Quasigroups and Related Systems 15 (2007), 95–107. (2007) Zbl1133.20009MR2379127

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.