The -metric colorings of a graph
Futaba Fujie-Okamoto; Willem Renzema; Ping Zhang
Mathematica Bohemica (2012)
- Volume: 137, Issue: 1, page 45-63
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topFujie-Okamoto, Futaba, Renzema, Willem, and Zhang, Ping. "The $k$-metric colorings of a graph." Mathematica Bohemica 137.1 (2012): 45-63. <http://eudml.org/doc/246364>.
@article{Fujie2012,
abstract = {For a nontrivial connected graph $G$ of order $n$, the detour distance $D(u,v)$ between two vertices $u$ and $v$ in $G$ is the length of a longest $u-v$ path in $G$. Detour distance is a metric on the vertex set of $G$. For each integer $k$ with $1\le k\le n-1$, a coloring $c\colon V(G)\rightarrow \mathbb \{N\}$ is a $k$-metric coloring of $G$ if $|c(u)-c(v)|+D(u,v)\ge k+1$ for every two distinct vertices $u$ and $v$ of $G$. The value $\chi _m^k(c)$ of a $k$-metric coloring $c$ is the maximum color assigned by $c$ to a vertex of $G$ and the $k$-metric chromatic number $\chi _m^k(G)$ of $G$ is the minimum value of a $k$-metric coloring of $G$. For every nontrivial connected graph $G$ of order $n$, $\chi _m^1(G)\le \chi _m^2(G)\le \cdots \le \chi _m^\{n-1\}(G)$. Metric chromatic numbers provide a generalization of several well-studied coloring parameters in graphs. Upper and lower bounds have been established for $\chi _m^k(G)$ in terms of other graphical parameters of a graph $G$ and exact values of $k$-metric chromatic numbers have been determined for complete multipartite graphs and cycles. For a nontrivial connected graph $G$, the anti-diameter $\{\rm adiam\}(G)$ is the minimum detour distance between two vertices of $G$. We show that the $\{\rm adiam\}(G)$-metric chromatic number of a graph $G$ provides information on the Hamiltonian properties of the graph and investigate realization results and problems on this parameter.},
author = {Fujie-Okamoto, Futaba, Renzema, Willem, Zhang, Ping},
journal = {Mathematica Bohemica},
keywords = {detour distance; metric coloring; detour distance; metric coloring; metric chromatic number},
language = {eng},
number = {1},
pages = {45-63},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The $k$-metric colorings of a graph},
url = {http://eudml.org/doc/246364},
volume = {137},
year = {2012},
}
TY - JOUR
AU - Fujie-Okamoto, Futaba
AU - Renzema, Willem
AU - Zhang, Ping
TI - The $k$-metric colorings of a graph
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 1
SP - 45
EP - 63
AB - For a nontrivial connected graph $G$ of order $n$, the detour distance $D(u,v)$ between two vertices $u$ and $v$ in $G$ is the length of a longest $u-v$ path in $G$. Detour distance is a metric on the vertex set of $G$. For each integer $k$ with $1\le k\le n-1$, a coloring $c\colon V(G)\rightarrow \mathbb {N}$ is a $k$-metric coloring of $G$ if $|c(u)-c(v)|+D(u,v)\ge k+1$ for every two distinct vertices $u$ and $v$ of $G$. The value $\chi _m^k(c)$ of a $k$-metric coloring $c$ is the maximum color assigned by $c$ to a vertex of $G$ and the $k$-metric chromatic number $\chi _m^k(G)$ of $G$ is the minimum value of a $k$-metric coloring of $G$. For every nontrivial connected graph $G$ of order $n$, $\chi _m^1(G)\le \chi _m^2(G)\le \cdots \le \chi _m^{n-1}(G)$. Metric chromatic numbers provide a generalization of several well-studied coloring parameters in graphs. Upper and lower bounds have been established for $\chi _m^k(G)$ in terms of other graphical parameters of a graph $G$ and exact values of $k$-metric chromatic numbers have been determined for complete multipartite graphs and cycles. For a nontrivial connected graph $G$, the anti-diameter ${\rm adiam}(G)$ is the minimum detour distance between two vertices of $G$. We show that the ${\rm adiam}(G)$-metric chromatic number of a graph $G$ provides information on the Hamiltonian properties of the graph and investigate realization results and problems on this parameter.
LA - eng
KW - detour distance; metric coloring; detour distance; metric coloring; metric chromatic number
UR - http://eudml.org/doc/246364
ER -
References
top- Chartrand, G., Erwin, D., Harary, F., Zhang, P., Radio labelings of graphs, Bull. Inst. Combin. Appl. 33 (2001), 77-85. (2001) Zbl0989.05102MR1913399
- Chartrand, G., Erwin, D., Zhang, P., Radio antipodal colorings of graphs, Math. Bohem. 127 (2002), 57-69. (2002) Zbl0995.05056MR1895247
- Chartrand, G., Erwin, D., Zhang, P., A graph labeling problem suggested by FM channel restrictions, Bull. Inst. Combin. Appl. 43 (2005), 43-57. (2005) Zbl1066.05125MR2116390
- Chartrand, G., Lesniak, L., Graphs & Digraphs, Fourth Edition. Chapman & Hall/CRC, Boca Raton, FL (2004). (2004) MR2107429
- Chartrand, G., Nebeský, L., Zhang, P., Bounds for the Hamiltonian chromatic number of a graph, Congr. Numer. 157 (2002), 113-125. (2002) Zbl1029.05059MR1985129
- Chartrand, G., Nebeský, L., Zhang, P., 10.7151/dmgt.1209, Discuss. Math. Graph Theory 24 (2004), 5-21. (2004) Zbl1056.05053MR2118291DOI10.7151/dmgt.1209
- Chartrand, G., Nebeský, L., Zhang, P., 10.1016/j.dam.2004.08.007, Discrete Appl. Math. 146 (2005), 257-272. (2005) Zbl1059.05046MR2115148DOI10.1016/j.dam.2004.08.007
- Chartrand, G., Nebeský, L., Zhang, P., 10.1016/j.disc.2004.10.009, Discrete Math. 290 (2005), 133-143. (2005) Zbl1059.05046MR2123385DOI10.1016/j.disc.2004.10.009
- Chartrand, G., Zhang, P., Radio colorings in graphs---a survey, J. Comput. Appl. Math. 2 (2007), 237-252. (2007) MR2563242
- Cozzens, M. B., Roberts, F. S., -colorings of graphs and the Channel Assignment Problem, Congr. Numer. 35 (1982), 191-208. (1982) MR0725881
- Cozzens, M. B., Roberts, F. S., Greedy algorithms for -colorings of complete graphs and the meaningfulness of conclusions about them, J. Combin. Inform. System Sci. 16 (1991), 286-299. (1991) Zbl0774.05037MR1186309
- Fotakis, D., Pantziou, G., Pentaris, G., Spirakis, P., Frequency assignment in mobile and radio networks, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 45 (1999), 73-90. (1999) Zbl0929.68005MR1661872
- Georges, J. P., Mauro, D. W., Generalized vertex labelings with a condition at distance two, Congr. Numer. 109 (1995), 141-159. (1995) Zbl0904.05077MR1369305
- Georges, J. P., Mauro, D. W., 10.1002/(SICI)1097-0118(199605)22:1<47::AID-JGT7>3.0.CO;2-L, J. Graph Theory 22 (1996), 47-57. (1996) Zbl0848.05056MR1383991DOI10.1002/(SICI)1097-0118(199605)22:1<47::AID-JGT7>3.0.CO;2-L
- Griggs, J. R., Yeh, R. K., 10.1137/0405048, SIAM J. Discrete Math. 5 (1992), 586-595. (1992) MR1186826DOI10.1137/0405048
- Hale, W., Frequency assignment: theory and applications, Proc. IEEE 68 (1980), 1497-1514. (1980)
- Harary, F., Plantholt, M., Graphs whose radio coloring number equals the number of nodes, Centre de Recherches Mathématiques. CRM Proceedings and Lecture Notes 23 (1999), 99-100. (1999) Zbl0941.05023MR1723637
- Heuvel, J. van den, Leese, R. A., Shepherd, M. A., 10.1002/(SICI)1097-0118(199812)29:4<263::AID-JGT5>3.0.CO;2-V, J. Graph Theory 29 (1998), 263-283. (1998) MR1653829DOI10.1002/(SICI)1097-0118(199812)29:4<263::AID-JGT5>3.0.CO;2-V
- Khennoufa, R., Togni, O., A note on radio antipodal colourings of paths, Math. Bohem. 130 (2005), 277-282. (2005) Zbl1110.05033MR2164657
- Liu, D., Zhu, X., 10.1137/S0895480102417768, SIAM J. Discrete Math. 3 (2005), 610-621. (2005) MR2191283DOI10.1137/S0895480102417768
- Metzger, B. H., Spectrum management technique, Paper presented at 38th National ORSA Meeting, Detroit, MI (1970). (1970)
- Nebeský, L., Hamiltonian colorings of graphs with long cycles, Math. Bohem. 128 (2003), 263-275. (2003) Zbl1050.05055MR2012604
- Nebeský, L., 10.1007/s10587-006-0020-x, Czech. Math. J. 56 (2006), 317-338. (2006) Zbl1164.05356MR2291739DOI10.1007/s10587-006-0020-x
- Okamoto, F., Renzema, W. A., Zhang, P., Results and open problems on Hamiltonian labelings of graphs, Congr. Numer. 198 (2009), 189-206. (2009) Zbl1206.05087MR2584352
- Roberts, F., 10.1016/0012-365X(91)90258-4, Discrete Math. 93 (1991), 229-245. (1991) Zbl0751.05042MR1139583DOI10.1016/0012-365X(91)90258-4
- Yeh, R. K., A survey on labeling graphs with a condition at distance 2, Discrete Math. 306 (2006), 1217-1231. (2006) MR2245647
- Walsh, T. R., The number of edge 3-colorings of the -prism, Centre de Recherches Mathématiques. CRM proceedings and Lecture Notes 23 (1999), 127-129. (1999) MR1723640
- Walsh, T. R., The cost of radio-colorings of paths and cycles, Centre de Recherches Mathématiques. CRM proceedings and Lecture Notes 23 (1999), 131-133. (1999) MR1723641
- Renzema, W. A., Zhang, P., 10.2140/involve.2009.2.95, Involve 2 (2009), 95-114. (2009) Zbl1206.05087MR2501348DOI10.2140/involve.2009.2.95
- Renzema, W. A., Zhang, P., On Hamiltonian labelings of graphs, J. Combin. Math. Combin. Comput. 74 (2010), 143-159. (2010) Zbl1225.05158MR2675897
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.