On the growth of solutions of some higher order linear differential equations

Abdallah El Farissi; Benharrat Belaidi

Applications of Mathematics (2012)

  • Volume: 57, Issue: 4, page 377-390
  • ISSN: 0862-7940

Abstract

top
In this paper we discuss the growth of solutions of the higher order nonhomogeneous linear differential equation f ( k ) + A k - 1 f ( k - 1 ) + + A 2 f ' ' + ( D 1 ( z ) + A 1 ( z ) e a z ) f ' + ( D 0 ( z ) + A 0 ( z ) e b z ) f = F ( k 2 ) , where a , b are complex constants that satisfy a b ( a - b ) 0 and A j ( z ) ( j = 0 , 1 , , k - 1 ) , D j ( z ) ( j = 0 , 1 ) , F ( z ) are entire functions with max { ρ ( A j ) ( j = 0 , 1 , , k - 1 ) , ρ ( D j ) ( j = 0 , 1 ) } < 1 . We also investigate the relationship between small functions and the solutions of the above equation.

How to cite

top

El Farissi, Abdallah, and Belaidi, Benharrat. "On the growth of solutions of some higher order linear differential equations." Applications of Mathematics 57.4 (2012): 377-390. <http://eudml.org/doc/246386>.

@article{ElFarissi2012,
abstract = {In this paper we discuss the growth of solutions of the higher order nonhomogeneous linear differential equation \begin\{align\} &f^\{(k)\}+A\_\{k-1\}f^\{(k-1)\}+\dots +A\_\{2\}f^\{\prime \prime \}+(D\_\{1\}(z) +A\_\{1\}(z) \{\rm e\}^\{az\})f^\{\prime \}\\ &\hfill +( D\_\{0\}(z)+A\_\{0\}(z) \{\rm e\}^\{bz\}) f=F\quad (k\ge 2), \end\{align\} where $a$, $b$ are complex constants that satisfy $ab(a-b) \ne 0 $ and $A_\{j\}(z)$$(j=0,1,\dots ,k-1)$, $D_\{j\}(z) $$(j=0,1)$, $F(z) $ are entire functions with $\max \lbrace \rho (A_\{j\}) \ (j=0,1,\dots ,k-1), \ \rho (D_\{j\})$$(j=0,1)\rbrace <1$. We also investigate the relationship between small functions and the solutions of the above equation.},
author = {El Farissi, Abdallah, Belaidi, Benharrat},
journal = {Applications of Mathematics},
keywords = {linear differential equations; entire solutions; order of growth; exponent of convergence of zeros; exponent of convergence of distinct zeros; linear differential equation; entire solution; exponent of convergence of zeros},
language = {eng},
number = {4},
pages = {377-390},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the growth of solutions of some higher order linear differential equations},
url = {http://eudml.org/doc/246386},
volume = {57},
year = {2012},
}

TY - JOUR
AU - El Farissi, Abdallah
AU - Belaidi, Benharrat
TI - On the growth of solutions of some higher order linear differential equations
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 4
SP - 377
EP - 390
AB - In this paper we discuss the growth of solutions of the higher order nonhomogeneous linear differential equation \begin{align} &f^{(k)}+A_{k-1}f^{(k-1)}+\dots +A_{2}f^{\prime \prime }+(D_{1}(z) +A_{1}(z) {\rm e}^{az})f^{\prime }\\ &\hfill +( D_{0}(z)+A_{0}(z) {\rm e}^{bz}) f=F\quad (k\ge 2), \end{align} where $a$, $b$ are complex constants that satisfy $ab(a-b) \ne 0 $ and $A_{j}(z)$$(j=0,1,\dots ,k-1)$, $D_{j}(z) $$(j=0,1)$, $F(z) $ are entire functions with $\max \lbrace \rho (A_{j}) \ (j=0,1,\dots ,k-1), \ \rho (D_{j})$$(j=0,1)\rbrace <1$. We also investigate the relationship between small functions and the solutions of the above equation.
LA - eng
KW - linear differential equations; entire solutions; order of growth; exponent of convergence of zeros; exponent of convergence of distinct zeros; linear differential equation; entire solution; exponent of convergence of zeros
UR - http://eudml.org/doc/246386
ER -

References

top
  1. Amemiya, I., Ozawa, M., Non-existence of finite order solutions of w ' ' + e - z w ' + Q ( z ) w = 0 , Hokkaido Math. J. 10 (1981), 1-17. (1981) MR0662294
  2. Belaïdi, B., Growth and oscillation theory of solutions of some linear differential equations, Mat. Vesn. 60 (2008), 233-246. (2008) Zbl1274.30112MR2465805
  3. Belaïdi, B., Farissi, A. El, 10.3336/gm.43.2.09, Glas. Mat., Ser. III 43 (2008), 363-373. (2008) Zbl1166.34054MR2460705DOI10.3336/gm.43.2.09
  4. Chen, Z. X., 10.1524/anly.1994.14.4.425, Analysis 14 (1994), 425-438. (1994) Zbl0815.34003MR1310623DOI10.1524/anly.1994.14.4.425
  5. Chen, Z. X., The growth of solutions of f ' ' + e - z f ' + Q ( z ) f = 0 where the order ( Q ) = 1 , Sci. China, Ser. A 45 (2002), 290-300. (2002) MR1903625
  6. Chen, Z. X., Shon, K. H., 10.1016/S0252-9602(17)30359-4, Acta Math. Sci., Ser. B, Engl. Ed. 24 (2004), 52-60. (2004) Zbl1056.30029MR2036062DOI10.1016/S0252-9602(17)30359-4
  7. Frei, M., 10.1007/BF02567016, Comment. Math. Helv. 35 (1961), 201-222. (1961) Zbl0115.06903MR0126008DOI10.1007/BF02567016
  8. Frei, M., 10.1007/BF02566887, Comment. Math. Helv. 36 (1961), 1-8. (1961) Zbl0115.06904MR0151657DOI10.1007/BF02566887
  9. Gundersen, G. G., 10.1017/S0308210500014451, Proc. R. Soc. Edinb., Sect. A 102 (1986), 9-17. (1986) MR0837157DOI10.1017/S0308210500014451
  10. Gundersen, G. G., 10.1112/jlms/s2-37.121.88, J. Lond. Math. Soc., II. Ser. 37 (1988), 88-104. (1988) Zbl0638.30030MR0921748DOI10.1112/jlms/s2-37.121.88
  11. Hayman, W. K., Meromorphic functions, Clarendon Press Oxford (1964). (1964) Zbl0115.06203MR0164038
  12. Jank, G., Volkmann, L., Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser Basel (1985). (1985) Zbl0682.30001MR0820202
  13. Langley, J. K., 10.2996/kmj/1138037272, Kodai Math. J. 9 (1986), 430-439. (1986) Zbl0609.34041MR0856690DOI10.2996/kmj/1138037272
  14. Markushevich, A. I., Theory of functions of a complex variable, Vol. II, Prentice-Hall Englewood Cliffs (1965). (1965) Zbl0142.32602MR0181738
  15. Nevanlinna, R., Eindeutige analytische Funktionen, Zweite Auflage. Reprint. Die Grundlehren der mathematischen Wissenschaften, Band 46, Springer Berlin-Heidelberg-New York (1974), German. (1974) MR0344426
  16. Ozawa, M., 10.2996/kmj/1138036197, Kodai Math. J. 3 (1980), 295-309. (1980) MR0588459DOI10.2996/kmj/1138036197
  17. Wang, J., Laine, I., 10.1016/j.jmaa.2007.11.022, J. Math. Anal. Appl. 342 (2008), 39-51. (2008) Zbl1151.34069MR2440778DOI10.1016/j.jmaa.2007.11.022
  18. Xu, H. Y., Cao, T. B., Oscillation of solutions of some higher order linear differential equations, Electron. J. Qual. Theory Differ. Equ., paper No. 63, 18 pages (2009). (2009) Zbl1198.34189MR2558638

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.