On the growth of solutions of some higher order linear differential equations
Abdallah El Farissi; Benharrat Belaidi
Applications of Mathematics (2012)
- Volume: 57, Issue: 4, page 377-390
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topEl Farissi, Abdallah, and Belaidi, Benharrat. "On the growth of solutions of some higher order linear differential equations." Applications of Mathematics 57.4 (2012): 377-390. <http://eudml.org/doc/246386>.
@article{ElFarissi2012,
abstract = {In this paper we discuss the growth of solutions of the higher order nonhomogeneous linear differential equation \begin\{align\} &f^\{(k)\}+A\_\{k-1\}f^\{(k-1)\}+\dots +A\_\{2\}f^\{\prime \prime \}+(D\_\{1\}(z) +A\_\{1\}(z) \{\rm e\}^\{az\})f^\{\prime \}\\ &\hfill +( D\_\{0\}(z)+A\_\{0\}(z) \{\rm e\}^\{bz\}) f=F\quad (k\ge 2), \end\{align\}
where $a$, $b$ are complex constants that satisfy $ab(a-b) \ne 0 $ and $A_\{j\}(z)$$(j=0,1,\dots ,k-1)$, $D_\{j\}(z) $$(j=0,1)$, $F(z) $ are entire functions with $\max \lbrace \rho (A_\{j\}) \ (j=0,1,\dots ,k-1), \ \rho (D_\{j\})$$(j=0,1)\rbrace <1$. We also investigate the relationship between small functions and the solutions of the above equation.},
author = {El Farissi, Abdallah, Belaidi, Benharrat},
journal = {Applications of Mathematics},
keywords = {linear differential equations; entire solutions; order of growth; exponent of convergence of zeros; exponent of convergence of distinct zeros; linear differential equation; entire solution; exponent of convergence of zeros},
language = {eng},
number = {4},
pages = {377-390},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the growth of solutions of some higher order linear differential equations},
url = {http://eudml.org/doc/246386},
volume = {57},
year = {2012},
}
TY - JOUR
AU - El Farissi, Abdallah
AU - Belaidi, Benharrat
TI - On the growth of solutions of some higher order linear differential equations
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 4
SP - 377
EP - 390
AB - In this paper we discuss the growth of solutions of the higher order nonhomogeneous linear differential equation \begin{align} &f^{(k)}+A_{k-1}f^{(k-1)}+\dots +A_{2}f^{\prime \prime }+(D_{1}(z) +A_{1}(z) {\rm e}^{az})f^{\prime }\\ &\hfill +( D_{0}(z)+A_{0}(z) {\rm e}^{bz}) f=F\quad (k\ge 2), \end{align}
where $a$, $b$ are complex constants that satisfy $ab(a-b) \ne 0 $ and $A_{j}(z)$$(j=0,1,\dots ,k-1)$, $D_{j}(z) $$(j=0,1)$, $F(z) $ are entire functions with $\max \lbrace \rho (A_{j}) \ (j=0,1,\dots ,k-1), \ \rho (D_{j})$$(j=0,1)\rbrace <1$. We also investigate the relationship between small functions and the solutions of the above equation.
LA - eng
KW - linear differential equations; entire solutions; order of growth; exponent of convergence of zeros; exponent of convergence of distinct zeros; linear differential equation; entire solution; exponent of convergence of zeros
UR - http://eudml.org/doc/246386
ER -
References
top- Amemiya, I., Ozawa, M., Non-existence of finite order solutions of , Hokkaido Math. J. 10 (1981), 1-17. (1981) MR0662294
- Belaïdi, B., Growth and oscillation theory of solutions of some linear differential equations, Mat. Vesn. 60 (2008), 233-246. (2008) Zbl1274.30112MR2465805
- Belaïdi, B., Farissi, A. El, 10.3336/gm.43.2.09, Glas. Mat., Ser. III 43 (2008), 363-373. (2008) Zbl1166.34054MR2460705DOI10.3336/gm.43.2.09
- Chen, Z. X., 10.1524/anly.1994.14.4.425, Analysis 14 (1994), 425-438. (1994) Zbl0815.34003MR1310623DOI10.1524/anly.1994.14.4.425
- Chen, Z. X., The growth of solutions of where the order , Sci. China, Ser. A 45 (2002), 290-300. (2002) MR1903625
- Chen, Z. X., Shon, K. H., 10.1016/S0252-9602(17)30359-4, Acta Math. Sci., Ser. B, Engl. Ed. 24 (2004), 52-60. (2004) Zbl1056.30029MR2036062DOI10.1016/S0252-9602(17)30359-4
- Frei, M., 10.1007/BF02567016, Comment. Math. Helv. 35 (1961), 201-222. (1961) Zbl0115.06903MR0126008DOI10.1007/BF02567016
- Frei, M., 10.1007/BF02566887, Comment. Math. Helv. 36 (1961), 1-8. (1961) Zbl0115.06904MR0151657DOI10.1007/BF02566887
- Gundersen, G. G., 10.1017/S0308210500014451, Proc. R. Soc. Edinb., Sect. A 102 (1986), 9-17. (1986) MR0837157DOI10.1017/S0308210500014451
- Gundersen, G. G., 10.1112/jlms/s2-37.121.88, J. Lond. Math. Soc., II. Ser. 37 (1988), 88-104. (1988) Zbl0638.30030MR0921748DOI10.1112/jlms/s2-37.121.88
- Hayman, W. K., Meromorphic functions, Clarendon Press Oxford (1964). (1964) Zbl0115.06203MR0164038
- Jank, G., Volkmann, L., Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser Basel (1985). (1985) Zbl0682.30001MR0820202
- Langley, J. K., 10.2996/kmj/1138037272, Kodai Math. J. 9 (1986), 430-439. (1986) Zbl0609.34041MR0856690DOI10.2996/kmj/1138037272
- Markushevich, A. I., Theory of functions of a complex variable, Vol. II, Prentice-Hall Englewood Cliffs (1965). (1965) Zbl0142.32602MR0181738
- Nevanlinna, R., Eindeutige analytische Funktionen, Zweite Auflage. Reprint. Die Grundlehren der mathematischen Wissenschaften, Band 46, Springer Berlin-Heidelberg-New York (1974), German. (1974) MR0344426
- Ozawa, M., 10.2996/kmj/1138036197, Kodai Math. J. 3 (1980), 295-309. (1980) MR0588459DOI10.2996/kmj/1138036197
- Wang, J., Laine, I., 10.1016/j.jmaa.2007.11.022, J. Math. Anal. Appl. 342 (2008), 39-51. (2008) Zbl1151.34069MR2440778DOI10.1016/j.jmaa.2007.11.022
- Xu, H. Y., Cao, T. B., Oscillation of solutions of some higher order linear differential equations, Electron. J. Qual. Theory Differ. Equ., paper No. 63, 18 pages (2009). (2009) Zbl1198.34189MR2558638
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.