A New Sequence Space Defined by a Sequence of Orlicz Functions over n -Normed Spaces

Kuldip Raj; Sunil K. Sharma

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2012)

  • Volume: 51, Issue: 1, page 89-100
  • ISSN: 0231-9721

Abstract

top
In this paper we introduce a new sequence space B V σ ( , u , p , r , · , ... , · ) defined by a sequence of Orlicz functions = ( M k ) and study some topological properties of this sequence space.

How to cite

top

Raj, Kuldip, and Sharma, Sunil K.. "A New Sequence Space Defined by a Sequence of Orlicz Functions over $n$-Normed Spaces." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 51.1 (2012): 89-100. <http://eudml.org/doc/246395>.

@article{Raj2012,
abstract = {In this paper we introduce a new sequence space $ BV_\{\sigma \}(\mathcal \{M\},u,p,r, \Vert \cdot , \ldots , \cdot \Vert )$ defined by a sequence of Orlicz functions $\mathcal \{M\} = (M_k)$ and study some topological properties of this sequence space.},
author = {Raj, Kuldip, Sharma, Sunil K.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {paranorm space; invariant mean; orlicz function; Musielak–orlicz function; $n$-normed space; solid; paranormed space; invariant mean; Orlicz function; Musielak-Orlicz function; -normed space; solid},
language = {eng},
number = {1},
pages = {89-100},
publisher = {Palacký University Olomouc},
title = {A New Sequence Space Defined by a Sequence of Orlicz Functions over $n$-Normed Spaces},
url = {http://eudml.org/doc/246395},
volume = {51},
year = {2012},
}

TY - JOUR
AU - Raj, Kuldip
AU - Sharma, Sunil K.
TI - A New Sequence Space Defined by a Sequence of Orlicz Functions over $n$-Normed Spaces
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2012
PB - Palacký University Olomouc
VL - 51
IS - 1
SP - 89
EP - 100
AB - In this paper we introduce a new sequence space $ BV_{\sigma }(\mathcal {M},u,p,r, \Vert \cdot , \ldots , \cdot \Vert )$ defined by a sequence of Orlicz functions $\mathcal {M} = (M_k)$ and study some topological properties of this sequence space.
LA - eng
KW - paranorm space; invariant mean; orlicz function; Musielak–orlicz function; $n$-normed space; solid; paranormed space; invariant mean; Orlicz function; Musielak-Orlicz function; -normed space; solid
UR - http://eudml.org/doc/246395
ER -

References

top
  1. Ahmad, Z. U., Mursaleen, M., 10.1090/S0002-9939-1988-0938676-7, Proc. Amer. Math. Soc., 103 (1983), 244–246. (1983) MR0938676DOI10.1090/S0002-9939-1988-0938676-7
  2. Gähler S., 10.1002/mana.19640280102, Math. Nachr. 28 (1965), 1–43. (1965) DOI10.1002/mana.19640280102
  3. Gunawan H., On n -inner product, n -norms, and the Cauchy–Schwartz Inequality, Scientiae Mathematicae Japonicae 5 (2001), 47–543. (2001) MR1885776
  4. Gunawan H., 10.1017/S0004972700019754, Bull. Aust. Math. Soc. 64 (2001), 137–147. (2001) MR1848086DOI10.1017/S0004972700019754
  5. Gunawan H., Mashadi M., 10.1155/S0161171201010675, Int. J. Math. Math. Sci. 27 (2001), 631–639. (2001) Zbl1006.46006MR1873126DOI10.1155/S0161171201010675
  6. Khan, V. A., On a new sequence space defined by Orlicz functions, Commun. Fac. Sci. Univ. Ank. 57 (2008), 25–33. (2008) Zbl1177.46006MR2528885
  7. Lindenstrauss, J., Tzafriri, L., 10.1007/BF02771656, Israel J. Math. 10 (1971), 379–390. (1971) MR0313780DOI10.1007/BF02771656
  8. Lorentz G. G., 10.1007/BF02393648, Acta Math. 80 (1948), 167–190. (1948) MR0027868DOI10.1007/BF02393648
  9. Maddox, I. J., Some properties of paranormed sequence spaces, J. London Math. Soc. 1, (1989), 316–322. (1989) MR0247330
  10. Maligranda, L., Orlicz spaces & interpolation, Seminars in mathematics 5 Polish Academy of Sciences, 1989. (1989) Zbl0874.46022MR2264389
  11. Misiak A., 10.1002/mana.19891400121, Math. Nachr. 140, (1989), 299–319. (1989) Zbl0708.46025MR1015402DOI10.1002/mana.19891400121
  12. Murasaleen, M., Matrix transformation between some new sequence spaces, Houston J. Math. 9 (1983), 505–509. (1983) 
  13. Murasaleen, M., 10.1093/qmath/34.1.77, Quart. J. Math. Oxford 34, (1983), 77–86. (1983) MR0688425DOI10.1093/qmath/34.1.77
  14. Musielak, J., Orlicz Spaces, Lectures Notes in Math. 1034 Springer, 1983. (1983) Zbl0557.46020
  15. Raj K., Sharma, A. K., Sharma S. K., A Sequence space defined by Musielak-Orlicz functions, Int. J. Pure Appl. Math. 67 (2011), 475–484. (2011) MR2814723
  16. Raj K., Sharma, S. K., Sharma A. K., Some difference sequence spaces in n -normed spaces defined by Musielak–Orlicz function, Armenian J. Math. 3 (2010), 127–141. (2010) MR2792497
  17. Raj K., Sharma, S. K., Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz functions, Acta Univ. Sapientiae Math. 3 (2011), 97–109. (2011) MR2823221
  18. Rao, M. M, Ren, Z. D, Theory of Orlicz Spaces, Marcel Dekker Inc. New york, Basel, Hongkong, 1991. (1991) Zbl0724.46032MR1113700
  19. Schafer, P., 10.1090/S0002-9939-1972-0306763-0, Proc. Amer. Math. Soc. 36 (1972), 104–110. (1972) MR0306763DOI10.1090/S0002-9939-1972-0306763-0
  20. Wilansky, A., Summability through Functional Analysis, North-Holland Math. Stud., 1984. (1984) Zbl0531.40008MR0738632

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.