Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space H 2

Mahsa Fatehi; Bahram Khani Robati

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 4, page 901-917
  • ISSN: 0011-4642

Abstract

top
In 1999 Nina Zorboska and in 2003 P. S. Bourdon, D. Levi, S. K. Narayan and J. H. Shapiro investigated the essentially normal composition operator C ϕ , when ϕ is a linear-fractional self-map of 𝔻 . In this paper first, we investigate the essential normality problem for the operator T w C ϕ on the Hardy space H 2 , where w is a bounded measurable function on 𝔻 which is continuous at each point of F ( ϕ ) , ϕ 𝒮 ( 2 ) , and T w is the Toeplitz operator with symbol w . Then we use these results and characterize the essentially normal finite linear combinations of certain linear-fractional composition operators on H 2 .

How to cite

top

Fatehi, Mahsa, and Robati, Bahram Khani. "Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space $H^{2}$." Czechoslovak Mathematical Journal 62.4 (2012): 901-917. <http://eudml.org/doc/246398>.

@article{Fatehi2012,
abstract = {In 1999 Nina Zorboska and in 2003 P. S. Bourdon, D. Levi, S. K. Narayan and J. H. Shapiro investigated the essentially normal composition operator $C_\{\varphi \}$, when $\varphi $ is a linear-fractional self-map of $\mathbb \{D\}$. In this paper first, we investigate the essential normality problem for the operator $T_\{w\}C_\{\varphi \}$ on the Hardy space $H^\{2\}$, where $w$ is a bounded measurable function on $\partial \mathbb \{D\}$ which is continuous at each point of $F(\varphi )$, $\varphi \in \{\mathcal \{S\}\}(2)$, and $T_\{w\}$ is the Toeplitz operator with symbol $w$. Then we use these results and characterize the essentially normal finite linear combinations of certain linear-fractional composition operators on $H^\{2\}$.},
author = {Fatehi, Mahsa, Robati, Bahram Khani},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hardy spaces; essentially normal; composition operator; linear-fractional transformation; Hardy space; essentially normal composition operator; linear-fractional transformation},
language = {eng},
number = {4},
pages = {901-917},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space $H^\{2\}$},
url = {http://eudml.org/doc/246398},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Fatehi, Mahsa
AU - Robati, Bahram Khani
TI - Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space $H^{2}$
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 901
EP - 917
AB - In 1999 Nina Zorboska and in 2003 P. S. Bourdon, D. Levi, S. K. Narayan and J. H. Shapiro investigated the essentially normal composition operator $C_{\varphi }$, when $\varphi $ is a linear-fractional self-map of $\mathbb {D}$. In this paper first, we investigate the essential normality problem for the operator $T_{w}C_{\varphi }$ on the Hardy space $H^{2}$, where $w$ is a bounded measurable function on $\partial \mathbb {D}$ which is continuous at each point of $F(\varphi )$, $\varphi \in {\mathcal {S}}(2)$, and $T_{w}$ is the Toeplitz operator with symbol $w$. Then we use these results and characterize the essentially normal finite linear combinations of certain linear-fractional composition operators on $H^{2}$.
LA - eng
KW - Hardy spaces; essentially normal; composition operator; linear-fractional transformation; Hardy space; essentially normal composition operator; linear-fractional transformation
UR - http://eudml.org/doc/246398
ER -

References

top
  1. Aleksandrov, A. B., Multiplicity of boundary values of inner functions, Izv. Akad. Nauk Arm. SSR, Ser. Mat. 22 (1987), 490-503. (1987) Zbl0648.30002MR0931885
  2. Bourdon, P. S., 10.1016/S0022-247X(03)00004-0, J. Math. Anal. Appl. 279 (2003), 228-245. (2003) Zbl1043.47021MR1970503DOI10.1016/S0022-247X(03)00004-0
  3. Bourdon, P. S., Levi, D., Narayan, S. K., Shapiro, J. H., 10.1016/S0022-247X(03)00005-2, J. Math. Anal. Appl. 280 (2003), 30-53. (2003) Zbl1024.47008MR1972190DOI10.1016/S0022-247X(03)00005-2
  4. Chacón, G. A., Chacón, G. R., Some properties of composition operators on the Dirichlet space, Acta Math. Univ. Comen., New Ser. 74 (2005), 259-272. (2005) Zbl1151.47033MR2195485
  5. Clark, D. N., 10.1007/BF02790036, J. Anal. Math. 25 (1972), 169-191. (1972) Zbl0252.47010MR0301534DOI10.1007/BF02790036
  6. Cowen, C. C., 10.1007/BF01272115, Integral Equations Oper. Theory 11 (1988), 151-160. (1988) MR0928479DOI10.1007/BF01272115
  7. Cowen, C. C., MacCluer, B. D., Composition Operators on Spaces of Analytic Functions, CRC Press Boca Raton (1995). (1995) Zbl0873.47017MR1397026
  8. Duren, P. L., Theory of H p Spaces, Academic Press New York (1970). (1970) MR0268655
  9. Heller, K., MacCluer, B. D., Weir, R. J., 10.1007/s00020-010-1840-5, Integral Equations Oper. Theory 69 (2011), 247-268. (2011) Zbl1241.47022MR2765588DOI10.1007/s00020-010-1840-5
  10. Kriete, T. L., MacCluer, B. D., Moorhouse, J. L., Toeplitz-composition C * -algebras, J. Oper. Theory 58 (2007), 135-156. (2007) Zbl1134.47303MR2336048
  11. Kriete, T. L., Moorhouse, J. L., 10.1090/S0002-9947-07-04166-9, Trans. Am. Math. Soc. 359 (2007), 2915-2944. (2007) Zbl1115.47023MR2286063DOI10.1090/S0002-9947-07-04166-9
  12. MacCluer, B. D., Weir, R. J., Essentially normal composition operators on Bergman spaces, Acta Sci. Math. 70 (2004), 799-817. (2004) Zbl1087.47031MR2107542
  13. MacCluer, B. D., Weir, R. J., 10.1007/s00020-005-1372-6, Integral Equations Oper. Theory 53 (2005), 373-402. (2005) Zbl1121.47017MR2186097DOI10.1007/s00020-005-1372-6
  14. Moorhouse, J., 10.1016/j.jfa.2004.01.012, J. Funct. Anal. 219 (2005), 70-92. (2005) Zbl1087.47032MR2108359DOI10.1016/j.jfa.2004.01.012
  15. Poltoratski, A. G., The boundary behavior of pseudocontinuable functions, St. Petersb. Math. J. 5 (1994), 389-406 translation from 389-406 Algebra Anal. 5 (1993), 189-210. (1993) MR1223178
  16. Ryff, J. V., 10.1215/S0012-7094-66-03340-0, Duke Math. J. 33 (1966), 347-354. (1966) MR0192062DOI10.1215/S0012-7094-66-03340-0
  17. Sarason, D. E., Sub-Hardy Hilbert Spaces in the Unit Disk, University of Arkansas Lecture Notes in the Mathematical Sciences, Vol. 10 John Wiley & Sons New York (1994). (1994) MR1289670
  18. Schwartz, H. J., Composition operators on H p , Ph.D. Thesis University of Toledo (1969). (1969) MR2618707
  19. Shapiro, J. H., Composition Operators and Classical Function Theory, Springer New York (1993). (1993) Zbl0791.30033MR1237406
  20. Shapiro, J. H., Taylor, P. D., Compact, nuclear, and Hilbert-Schmidt composition operators on H 2 , Indiana Univ. Math. J. 23 (1973), 471-496. (1973) MR0326472
  21. Zorboska, N., Closed range essentially normal composition operators are normal, Acta Sci. Math. 65 (1999), 287-292. (1999) Zbl0938.47022MR1702203

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.