Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space
Mahsa Fatehi; Bahram Khani Robati
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 4, page 901-917
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFatehi, Mahsa, and Robati, Bahram Khani. "Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space $H^{2}$." Czechoslovak Mathematical Journal 62.4 (2012): 901-917. <http://eudml.org/doc/246398>.
@article{Fatehi2012,
abstract = {In 1999 Nina Zorboska and in 2003 P. S. Bourdon, D. Levi, S. K. Narayan and J. H. Shapiro investigated the essentially normal composition operator $C_\{\varphi \}$, when $\varphi $ is a linear-fractional self-map of $\mathbb \{D\}$. In this paper first, we investigate the essential normality problem for the operator $T_\{w\}C_\{\varphi \}$ on the Hardy space $H^\{2\}$, where $w$ is a bounded measurable function on $\partial \mathbb \{D\}$ which is continuous at each point of $F(\varphi )$, $\varphi \in \{\mathcal \{S\}\}(2)$, and $T_\{w\}$ is the Toeplitz operator with symbol $w$. Then we use these results and characterize the essentially normal finite linear combinations of certain linear-fractional composition operators on $H^\{2\}$.},
author = {Fatehi, Mahsa, Robati, Bahram Khani},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hardy spaces; essentially normal; composition operator; linear-fractional transformation; Hardy space; essentially normal composition operator; linear-fractional transformation},
language = {eng},
number = {4},
pages = {901-917},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space $H^\{2\}$},
url = {http://eudml.org/doc/246398},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Fatehi, Mahsa
AU - Robati, Bahram Khani
TI - Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space $H^{2}$
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 901
EP - 917
AB - In 1999 Nina Zorboska and in 2003 P. S. Bourdon, D. Levi, S. K. Narayan and J. H. Shapiro investigated the essentially normal composition operator $C_{\varphi }$, when $\varphi $ is a linear-fractional self-map of $\mathbb {D}$. In this paper first, we investigate the essential normality problem for the operator $T_{w}C_{\varphi }$ on the Hardy space $H^{2}$, where $w$ is a bounded measurable function on $\partial \mathbb {D}$ which is continuous at each point of $F(\varphi )$, $\varphi \in {\mathcal {S}}(2)$, and $T_{w}$ is the Toeplitz operator with symbol $w$. Then we use these results and characterize the essentially normal finite linear combinations of certain linear-fractional composition operators on $H^{2}$.
LA - eng
KW - Hardy spaces; essentially normal; composition operator; linear-fractional transformation; Hardy space; essentially normal composition operator; linear-fractional transformation
UR - http://eudml.org/doc/246398
ER -
References
top- Aleksandrov, A. B., Multiplicity of boundary values of inner functions, Izv. Akad. Nauk Arm. SSR, Ser. Mat. 22 (1987), 490-503. (1987) Zbl0648.30002MR0931885
- Bourdon, P. S., 10.1016/S0022-247X(03)00004-0, J. Math. Anal. Appl. 279 (2003), 228-245. (2003) Zbl1043.47021MR1970503DOI10.1016/S0022-247X(03)00004-0
- Bourdon, P. S., Levi, D., Narayan, S. K., Shapiro, J. H., 10.1016/S0022-247X(03)00005-2, J. Math. Anal. Appl. 280 (2003), 30-53. (2003) Zbl1024.47008MR1972190DOI10.1016/S0022-247X(03)00005-2
- Chacón, G. A., Chacón, G. R., Some properties of composition operators on the Dirichlet space, Acta Math. Univ. Comen., New Ser. 74 (2005), 259-272. (2005) Zbl1151.47033MR2195485
- Clark, D. N., 10.1007/BF02790036, J. Anal. Math. 25 (1972), 169-191. (1972) Zbl0252.47010MR0301534DOI10.1007/BF02790036
- Cowen, C. C., 10.1007/BF01272115, Integral Equations Oper. Theory 11 (1988), 151-160. (1988) MR0928479DOI10.1007/BF01272115
- Cowen, C. C., MacCluer, B. D., Composition Operators on Spaces of Analytic Functions, CRC Press Boca Raton (1995). (1995) Zbl0873.47017MR1397026
- Duren, P. L., Theory of Spaces, Academic Press New York (1970). (1970) MR0268655
- Heller, K., MacCluer, B. D., Weir, R. J., 10.1007/s00020-010-1840-5, Integral Equations Oper. Theory 69 (2011), 247-268. (2011) Zbl1241.47022MR2765588DOI10.1007/s00020-010-1840-5
- Kriete, T. L., MacCluer, B. D., Moorhouse, J. L., Toeplitz-composition -algebras, J. Oper. Theory 58 (2007), 135-156. (2007) Zbl1134.47303MR2336048
- Kriete, T. L., Moorhouse, J. L., 10.1090/S0002-9947-07-04166-9, Trans. Am. Math. Soc. 359 (2007), 2915-2944. (2007) Zbl1115.47023MR2286063DOI10.1090/S0002-9947-07-04166-9
- MacCluer, B. D., Weir, R. J., Essentially normal composition operators on Bergman spaces, Acta Sci. Math. 70 (2004), 799-817. (2004) Zbl1087.47031MR2107542
- MacCluer, B. D., Weir, R. J., 10.1007/s00020-005-1372-6, Integral Equations Oper. Theory 53 (2005), 373-402. (2005) Zbl1121.47017MR2186097DOI10.1007/s00020-005-1372-6
- Moorhouse, J., 10.1016/j.jfa.2004.01.012, J. Funct. Anal. 219 (2005), 70-92. (2005) Zbl1087.47032MR2108359DOI10.1016/j.jfa.2004.01.012
- Poltoratski, A. G., The boundary behavior of pseudocontinuable functions, St. Petersb. Math. J. 5 (1994), 389-406 translation from 389-406 Algebra Anal. 5 (1993), 189-210. (1993) MR1223178
- Ryff, J. V., 10.1215/S0012-7094-66-03340-0, Duke Math. J. 33 (1966), 347-354. (1966) MR0192062DOI10.1215/S0012-7094-66-03340-0
- Sarason, D. E., Sub-Hardy Hilbert Spaces in the Unit Disk, University of Arkansas Lecture Notes in the Mathematical Sciences, Vol. 10 John Wiley & Sons New York (1994). (1994) MR1289670
- Schwartz, H. J., Composition operators on , Ph.D. Thesis University of Toledo (1969). (1969) MR2618707
- Shapiro, J. H., Composition Operators and Classical Function Theory, Springer New York (1993). (1993) Zbl0791.30033MR1237406
- Shapiro, J. H., Taylor, P. D., Compact, nuclear, and Hilbert-Schmidt composition operators on , Indiana Univ. Math. J. 23 (1973), 471-496. (1973) MR0326472
- Zorboska, N., Closed range essentially normal composition operators are normal, Acta Sci. Math. 65 (1999), 287-292. (1999) Zbl0938.47022MR1702203
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.