Some results on fuzzy proper functions and connectedness in smooth fuzzy topological spaces
Mathematica Bohemica (2012)
- Volume: 137, Issue: 3, page 311-332
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topRoopkumar, R., and Kalaivani, C.. "Some results on fuzzy proper functions and connectedness in smooth fuzzy topological spaces." Mathematica Bohemica 137.3 (2012): 311-332. <http://eudml.org/doc/246418>.
@article{Roopkumar2012,
abstract = {In this paper, we introduce the notion of the $(\alpha ,\beta )$-weakly smooth fuzzy continuous proper function and discuss its properties. We also study several notions of connectedness in smooth fuzzy topological spaces and establish that the product of connected sets (spaces) is not connected in any sense, as well as investigate continuous images of smooth connected sets (spaces) under $(\alpha ,\beta )$-weakly smooth fuzzy continuous functions.},
author = {Roopkumar, R., Kalaivani, C.},
journal = {Mathematica Bohemica},
keywords = {fuzzy proper function; smooth fuzzy topology; smooth fuzzy continuity; fuzzy topological space; fuzzy subspace; proper function},
language = {eng},
number = {3},
pages = {311-332},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results on fuzzy proper functions and connectedness in smooth fuzzy topological spaces},
url = {http://eudml.org/doc/246418},
volume = {137},
year = {2012},
}
TY - JOUR
AU - Roopkumar, R.
AU - Kalaivani, C.
TI - Some results on fuzzy proper functions and connectedness in smooth fuzzy topological spaces
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 3
SP - 311
EP - 332
AB - In this paper, we introduce the notion of the $(\alpha ,\beta )$-weakly smooth fuzzy continuous proper function and discuss its properties. We also study several notions of connectedness in smooth fuzzy topological spaces and establish that the product of connected sets (spaces) is not connected in any sense, as well as investigate continuous images of smooth connected sets (spaces) under $(\alpha ,\beta )$-weakly smooth fuzzy continuous functions.
LA - eng
KW - fuzzy proper function; smooth fuzzy topology; smooth fuzzy continuity; fuzzy topological space; fuzzy subspace; proper function
UR - http://eudml.org/doc/246418
ER -
References
top- Aygün, H., Abbas, S. E., Some good extensions of Šostak's L-fuzzy topology, Hacet. J. Math. Stat. 36 (2007), 115-125. (2007) MR2411629
- Abbas, S. E., 10.1155/S0161171204401021, Int. J. Math. Math. Sci. 66 (2004), 3587-3602. (2004) Zbl1071.54002MR2128776DOI10.1155/S0161171204401021
- Chakraborty, M. K., Ahsanullah, T. M. G., Fuzzy topology on fuzzy sets and tolerance topology, Fuzzy Sets Syst. 45 (1992), 103-108. (1992) Zbl0754.54004MR1148457
- Chang, C. L., 10.1016/0022-247X(68)90057-7, J. Math. Anal. Appl. 24 (1968), 182-189. (1968) Zbl0167.51001MR0236859DOI10.1016/0022-247X(68)90057-7
- Chaudhuri, A. K., Das, P., Some results on fuzzy topology on fuzzy sets, Fuzzy Sets Syst. 56 (1993), 331-336. (1993) Zbl0794.54012MR1227903
- Demirici, M., On several types of compactness in smooth topological spaces, Fuzzy Sets Syst. 90 (1997), 83-88. (1997) MR1460342
- Demirici, M., Neighborhood structures of smooth topological spaces, Fuzzy Sets Syst. 92 (1997), 123-128. (1997) MR1481022
- Demirici, M., Three topological structures of smooth topological spaces, Fuzzy Sets Syst. 101 (1999), 185-190. (1999) MR1658916
- Gayyar, M. K. El, Kerre, E. E., Almost compactness and near compactness in smooth topological spaces, Fuzzy Sets Syst. 62 (1994), 193-202. (1994) Zbl0833.54007MR1274998
- Alla, M. A. Fath, Mahmoud, F. S., Fuzzy topology on fuzzy sets, functions with fuzzy closed graphs, strong fuzzy closed graphs, J. Fuzzy Math. 9 (2001), 525-533. (2001) MR1859535
- Guido, C., Powerset operators based approach to fuzzy topologies on fuzzy sets, topological and algebraic structures in fuzzy sets, A handbook of recent developments in the Mathematics of fuzzy sets S. E. Rodabaugh and E. P. Klement Trends Log. Stud. Log. Libr., vol. 20, Kluwer Academic Publishers, Dordrecht (2003), 401-413. (2003) MR2046750
- Hazra, R. N., Samanta, S. K., Chattopadhyay, K. C., Fuzzy topology redefined, Fuzzy Sets Syst. 45 (1992), 79-82. (1992) Zbl0756.54002MR1148454
- Höhle, U., 10.1016/0022-247X(80)90173-0, J. Math. Anal. Appl. 78 (1980), 659-673. (1980) Zbl0462.54002MR0601561DOI10.1016/0022-247X(80)90173-0
- Höhle, U., (eds.), S. E. Rodabaugh, Mathematics of fuzzy Sets: Logic, Topology, and Measure Theory, Kluwer Academic Publishers, Dordrecht (1999). (1999) Zbl0942.00008MR1788899
- Höhle, U., Šostak, A. P., A general theory of fuzzy topological spaces, Fuzzy Sets Syst. 73 (1995), 131-149. (1995) Zbl0948.54003MR1355360
- Höhle, U., Šostak, A. P., Axiomatic foundations of fixed-basis fuzzy topology, Mathematics of fuzzy Sets: Logic, Topology, and Measure Theory U. Höhle, S. E. Rodabaugh Kluwer Academic Publishers, Dordrecht (1999), 123-272. (1999) Zbl0977.54006MR1788903
- Kubiak, T., On fuzzy topologies, Ph.D. thesis, Adam Mickiewicz University. Poznań, Poland (1985). (1985)
- Kubiak, T., Šostak, A. P., 10.1080/16073606.1997.9632016, Quaestiones Math. 20 (1997), 423-429. (1997) Zbl0890.54005MR1641456DOI10.1080/16073606.1997.9632016
- Kubiak, T., Šostak, A. P., Foundations of the theory of -fuzzy topological spaces, Abstracts of the 30th Linz Seminar on Fuzzy Set Theory U. Bodenhofer, B. De Baets, E. P. Klement, S. Saminger-Platz Johannes Kepler Universität, Linz (2009), 70-73. (2009) MR2819393
- Ming, P. P., Ming, L. Y., 10.1016/0022-247X(80)90048-7, J. Math. Anal. Appl. 76 (1980), 571-599. (1980) MR0587361DOI10.1016/0022-247X(80)90048-7
- Peeters, W., Subspaces of smooth fuzzy topologies and initial smooth fuzzy structures, Fuzzy Sets Syst. 104 (1999), 423-433. (1999) Zbl0944.54004MR1692338
- Rodabaugh, S. E., Categorical foundations of variable-basis fuzzy topology, Mathematics of fuzzy Sets: Logic, Topology, and Measure Theory U. Höhle, S. E. Rodabaugh Kluwer Academic Publishers, Dordrecht (1999), 273-388. (1999) MR1788904
- Rodabaugh, S. E., 10.1007/978-1-4615-5079-2_3, Mathematics of fuzzy Sets: Logic, Topology, and Measure Theory U. Höhle, S. E. Rodabaugh Kluwer Academic Publishers, Dordrecht (1999), 91-116. (1999) Zbl0974.03047MR1788901DOI10.1007/978-1-4615-5079-2_3
- Ramadan, A. A., Alla, M. A. Fath, Abbas, S. E., Smooth fuzzy topology on fuzzy sets, J. Fuzzy Math. 10 (2002), 59-68. (2002) MR1894600
- Roopkumar, R., Kalaivani, C., 10.4134/CKMS.2011.26.2.305, Commun. Korean Math. Soc. 26 (2011), 305-320. (2011) MR2816568DOI10.4134/CKMS.2011.26.2.305
- Šostak, A. P., On a fuzzy topological structure, Rend. Circ. Matem. Palermo Ser. II. 11 (1985), 89-103. (1985) MR0897975
- Srivastava, R., On separation axioms in a newly defined fuzzy topology, Fuzzy Sets Syst. 62 (1994), 341-346. (1994) Zbl0833.54006MR1276601
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.