Some results on fuzzy proper functions and connectedness in smooth fuzzy topological spaces

R. Roopkumar; C. Kalaivani

Mathematica Bohemica (2012)

  • Volume: 137, Issue: 3, page 311-332
  • ISSN: 0862-7959

Abstract

top
In this paper, we introduce the notion of the ( α , β ) -weakly smooth fuzzy continuous proper function and discuss its properties. We also study several notions of connectedness in smooth fuzzy topological spaces and establish that the product of connected sets (spaces) is not connected in any sense, as well as investigate continuous images of smooth connected sets (spaces) under ( α , β ) -weakly smooth fuzzy continuous functions.

How to cite

top

Roopkumar, R., and Kalaivani, C.. "Some results on fuzzy proper functions and connectedness in smooth fuzzy topological spaces." Mathematica Bohemica 137.3 (2012): 311-332. <http://eudml.org/doc/246418>.

@article{Roopkumar2012,
abstract = {In this paper, we introduce the notion of the $(\alpha ,\beta )$-weakly smooth fuzzy continuous proper function and discuss its properties. We also study several notions of connectedness in smooth fuzzy topological spaces and establish that the product of connected sets (spaces) is not connected in any sense, as well as investigate continuous images of smooth connected sets (spaces) under $(\alpha ,\beta )$-weakly smooth fuzzy continuous functions.},
author = {Roopkumar, R., Kalaivani, C.},
journal = {Mathematica Bohemica},
keywords = {fuzzy proper function; smooth fuzzy topology; smooth fuzzy continuity; fuzzy topological space; fuzzy subspace; proper function},
language = {eng},
number = {3},
pages = {311-332},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results on fuzzy proper functions and connectedness in smooth fuzzy topological spaces},
url = {http://eudml.org/doc/246418},
volume = {137},
year = {2012},
}

TY - JOUR
AU - Roopkumar, R.
AU - Kalaivani, C.
TI - Some results on fuzzy proper functions and connectedness in smooth fuzzy topological spaces
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 3
SP - 311
EP - 332
AB - In this paper, we introduce the notion of the $(\alpha ,\beta )$-weakly smooth fuzzy continuous proper function and discuss its properties. We also study several notions of connectedness in smooth fuzzy topological spaces and establish that the product of connected sets (spaces) is not connected in any sense, as well as investigate continuous images of smooth connected sets (spaces) under $(\alpha ,\beta )$-weakly smooth fuzzy continuous functions.
LA - eng
KW - fuzzy proper function; smooth fuzzy topology; smooth fuzzy continuity; fuzzy topological space; fuzzy subspace; proper function
UR - http://eudml.org/doc/246418
ER -

References

top
  1. Aygün, H., Abbas, S. E., Some good extensions of Šostak's L-fuzzy topology, Hacet. J. Math. Stat. 36 (2007), 115-125. (2007) MR2411629
  2. Abbas, S. E., 10.1155/S0161171204401021, Int. J. Math. Math. Sci. 66 (2004), 3587-3602. (2004) Zbl1071.54002MR2128776DOI10.1155/S0161171204401021
  3. Chakraborty, M. K., Ahsanullah, T. M. G., Fuzzy topology on fuzzy sets and tolerance topology, Fuzzy Sets Syst. 45 (1992), 103-108. (1992) Zbl0754.54004MR1148457
  4. Chang, C. L., 10.1016/0022-247X(68)90057-7, J. Math. Anal. Appl. 24 (1968), 182-189. (1968) Zbl0167.51001MR0236859DOI10.1016/0022-247X(68)90057-7
  5. Chaudhuri, A. K., Das, P., Some results on fuzzy topology on fuzzy sets, Fuzzy Sets Syst. 56 (1993), 331-336. (1993) Zbl0794.54012MR1227903
  6. Demirici, M., On several types of compactness in smooth topological spaces, Fuzzy Sets Syst. 90 (1997), 83-88. (1997) MR1460342
  7. Demirici, M., Neighborhood structures of smooth topological spaces, Fuzzy Sets Syst. 92 (1997), 123-128. (1997) MR1481022
  8. Demirici, M., Three topological structures of smooth topological spaces, Fuzzy Sets Syst. 101 (1999), 185-190. (1999) MR1658916
  9. Gayyar, M. K. El, Kerre, E. E., Almost compactness and near compactness in smooth topological spaces, Fuzzy Sets Syst. 62 (1994), 193-202. (1994) Zbl0833.54007MR1274998
  10. Alla, M. A. Fath, Mahmoud, F. S., Fuzzy topology on fuzzy sets, functions with fuzzy closed graphs, strong fuzzy closed graphs, J. Fuzzy Math. 9 (2001), 525-533. (2001) MR1859535
  11. Guido, C., Powerset operators based approach to fuzzy topologies on fuzzy sets, topological and algebraic structures in fuzzy sets, A handbook of recent developments in the Mathematics of fuzzy sets S. E. Rodabaugh and E. P. Klement Trends Log. Stud. Log. Libr., vol. 20, Kluwer Academic Publishers, Dordrecht (2003), 401-413. (2003) MR2046750
  12. Hazra, R. N., Samanta, S. K., Chattopadhyay, K. C., Fuzzy topology redefined, Fuzzy Sets Syst. 45 (1992), 79-82. (1992) Zbl0756.54002MR1148454
  13. Höhle, U., 10.1016/0022-247X(80)90173-0, J. Math. Anal. Appl. 78 (1980), 659-673. (1980) Zbl0462.54002MR0601561DOI10.1016/0022-247X(80)90173-0
  14. Höhle, U., (eds.), S. E. Rodabaugh, Mathematics of fuzzy Sets: Logic, Topology, and Measure Theory, Kluwer Academic Publishers, Dordrecht (1999). (1999) Zbl0942.00008MR1788899
  15. Höhle, U., Šostak, A. P., A general theory of fuzzy topological spaces, Fuzzy Sets Syst. 73 (1995), 131-149. (1995) Zbl0948.54003MR1355360
  16. Höhle, U., Šostak, A. P., Axiomatic foundations of fixed-basis fuzzy topology, Mathematics of fuzzy Sets: Logic, Topology, and Measure Theory U. Höhle, S. E. Rodabaugh Kluwer Academic Publishers, Dordrecht (1999), 123-272. (1999) Zbl0977.54006MR1788903
  17. Kubiak, T., On fuzzy topologies, Ph.D. thesis, Adam Mickiewicz University. Poznań, Poland (1985). (1985) 
  18. Kubiak, T., Šostak, A. P., 10.1080/16073606.1997.9632016, Quaestiones Math. 20 (1997), 423-429. (1997) Zbl0890.54005MR1641456DOI10.1080/16073606.1997.9632016
  19. Kubiak, T., Šostak, A. P., Foundations of the theory of ( L , M ) -fuzzy topological spaces, Abstracts of the 30th Linz Seminar on Fuzzy Set Theory U. Bodenhofer, B. De Baets, E. P. Klement, S. Saminger-Platz Johannes Kepler Universität, Linz (2009), 70-73. (2009) MR2819393
  20. Ming, P. P., Ming, L. Y., 10.1016/0022-247X(80)90048-7, J. Math. Anal. Appl. 76 (1980), 571-599. (1980) MR0587361DOI10.1016/0022-247X(80)90048-7
  21. Peeters, W., Subspaces of smooth fuzzy topologies and initial smooth fuzzy structures, Fuzzy Sets Syst. 104 (1999), 423-433. (1999) Zbl0944.54004MR1692338
  22. Rodabaugh, S. E., Categorical foundations of variable-basis fuzzy topology, Mathematics of fuzzy Sets: Logic, Topology, and Measure Theory U. Höhle, S. E. Rodabaugh Kluwer Academic Publishers, Dordrecht (1999), 273-388. (1999) MR1788904
  23. Rodabaugh, S. E., 10.1007/978-1-4615-5079-2_3, Mathematics of fuzzy Sets: Logic, Topology, and Measure Theory U. Höhle, S. E. Rodabaugh Kluwer Academic Publishers, Dordrecht (1999), 91-116. (1999) Zbl0974.03047MR1788901DOI10.1007/978-1-4615-5079-2_3
  24. Ramadan, A. A., Alla, M. A. Fath, Abbas, S. E., Smooth fuzzy topology on fuzzy sets, J. Fuzzy Math. 10 (2002), 59-68. (2002) MR1894600
  25. Roopkumar, R., Kalaivani, C., 10.4134/CKMS.2011.26.2.305, Commun. Korean Math. Soc. 26 (2011), 305-320. (2011) MR2816568DOI10.4134/CKMS.2011.26.2.305
  26. Šostak, A. P., On a fuzzy topological structure, Rend. Circ. Matem. Palermo Ser. II. 11 (1985), 89-103. (1985) MR0897975
  27. Srivastava, R., On separation axioms in a newly defined fuzzy topology, Fuzzy Sets Syst. 62 (1994), 341-346. (1994) Zbl0833.54006MR1276601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.