Combinatorial differential geometry and ideal Bianchi–Ricci identities II – the torsion case
Archivum Mathematicum (2012)
- Volume: 048, Issue: 1, page 61-80
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topJanyška, Josef, and Markl, Martin. "Combinatorial differential geometry and ideal Bianchi–Ricci identities II – the torsion case." Archivum Mathematicum 048.1 (2012): 61-80. <http://eudml.org/doc/246441>.
@article{Janyška2012,
abstract = {This paper is a continuation of [2], dealing with a general, not-necessarily torsion-free, connection. It characterizes all possible systems of generators for vector-field valued operators that depend naturally on a set of vector fields and a linear connection, describes the size of the space of such operators and proves the existence of an ‘ideal’ basis consisting of operators with given leading terms which satisfy the (generalized) Bianchi–Ricci identities without corrections.},
author = {Janyška, Josef, Markl, Martin},
journal = {Archivum Mathematicum},
keywords = {natural operator; linear connection; torsion; reduction theorem; graph; natural operator; linear connection; reduction theorem},
language = {eng},
number = {1},
pages = {61-80},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Combinatorial differential geometry and ideal Bianchi–Ricci identities II – the torsion case},
url = {http://eudml.org/doc/246441},
volume = {048},
year = {2012},
}
TY - JOUR
AU - Janyška, Josef
AU - Markl, Martin
TI - Combinatorial differential geometry and ideal Bianchi–Ricci identities II – the torsion case
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 1
SP - 61
EP - 80
AB - This paper is a continuation of [2], dealing with a general, not-necessarily torsion-free, connection. It characterizes all possible systems of generators for vector-field valued operators that depend naturally on a set of vector fields and a linear connection, describes the size of the space of such operators and proves the existence of an ‘ideal’ basis consisting of operators with given leading terms which satisfy the (generalized) Bianchi–Ricci identities without corrections.
LA - eng
KW - natural operator; linear connection; torsion; reduction theorem; graph; natural operator; linear connection; reduction theorem
UR - http://eudml.org/doc/246441
ER -
References
top- Janyška, J., 10.1016/j.difgeo.2003.10.006, Differential Geom. Appl. 20 (2004), 177. (2004) Zbl1108.53016MR2038554DOI10.1016/j.difgeo.2003.10.006
- Janyška, J., Markl, M., 10.1515/advgeom.2011.017, Adv. Geom. 11 (3) (2011), 509–540. (2011) Zbl1220.53019MR2817591DOI10.1515/advgeom.2011.017
- Kolář, I., Michor, P. W., Slovák, J., Natural operations in differential geometry, Springer–Verlag, Berlin, 1993. (1993) Zbl0782.53013MR1202431
- Krupka, D., Janyška, J., Lectures on differential invariants, Folia Fac. Sci. Nat. Univ. Purkynianae Brun. Math., 1990. (1990) Zbl0752.53004MR1108622
- Łubczonok, G., On reduction theorems, Ann. Polon. Math. 26 (1972), 125–133. (1972) MR0307078
- Mac Lane, S., Homology, Springer–Verlag, 1963. (1963)
- Markl, M., 10.1515/form.2004.002, Forum Math. 16 (2004), 129–160. (2004) Zbl1067.55011MR2034546DOI10.1515/form.2004.002
- Markl, M., –invariant tensors and graphs, Arch. Math. (Brno) 44 (2008), 339–353. (2008) Zbl1212.15051MR2501578
- Markl, M., 10.1016/j.difgeo.2008.10.008, Differential Geom. Appl. 27 (2009), 257–278. (2009) Zbl1165.51005MR2503978DOI10.1016/j.difgeo.2008.10.008
- Markl, M., Shnider, S., Stasheff, J. D., Operads in Algebra, Topology and Physics, Mathematical Surveys and Monographs, vol. 96, Amer. Math. Soc., 2002. (2002) Zbl1017.18001MR1898414
- Markl, M., Voronov, A. A., PROPped up graph cohomology, Algebra, arithmetic, and geometry: In honor of Yu. I. Manin, vol. II, Birkhäuser Boston, Inc., Boston, MA, progr. math., 270 ed., 2009, pp. 249–281. (2009) Zbl1208.18008MR2641192
- Nijenhuis, A., Theory of the geometric object, Thesis, University of Amsterdam (1952). (1952) Zbl0049.22903MR0050364
- Nijenhuis, A., Natural bundles and their general properties. Geometric objects revisited, Differential geometry (in honor of Kentaro Yano), Kinokuniya, Tokyo, 1972, pp. 317–334. (1972) Zbl0246.53018MR0380862
- S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, 1963. (1963) MR0152974
- Schouten, J. A., Ricci calculus, Berlin–Göttingen, 1954. (1954) Zbl0057.37803
- Terng, C. L., 10.2307/2373910, Amer. J. Math. 100 (1978), 775–828. (1978) Zbl0422.58001MR0509074DOI10.2307/2373910
- Veblen, O., Invariants of quadratic differential forms, Cambridge Tracts in Mathematics and Mathematical Physics, no. 24, 1927. (1927)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.