Weak * -continuous derivations in dual Banach algebras

M. Eshaghi-Gordji; A. Ebadian; F. Habibian; B. Hayati

Archivum Mathematicum (2012)

  • Volume: 048, Issue: 1, page 39-44
  • ISSN: 0044-8753

Abstract

top
Let 𝒜 be a dual Banach algebra. We investigate the first weak * -continuous cohomology group of 𝒜 with coefficients in 𝒜 . Hence, we obtain conditions on 𝒜 for which H w * 1 ( 𝒜 , 𝒜 ) = { 0 } .

How to cite

top

Eshaghi-Gordji, M., et al. "Weak$^*$-continuous derivations in dual Banach algebras." Archivum Mathematicum 048.1 (2012): 39-44. <http://eudml.org/doc/246455>.

@article{Eshaghi2012,
abstract = {Let $\mathcal \{A\}$ be a dual Banach algebra. We investigate the first weak$^*$-continuous cohomology group of $\mathcal \{A\}$ with coefficients in $\mathcal \{A\}$. Hence, we obtain conditions on $\{\mathcal \{A\}\}$ for which \[ H^1\_\{w^*\}(\mathcal \{A\}, \mathcal \{A\})=\lbrace 0\rbrace \,. \]},
author = {Eshaghi-Gordji, M., Ebadian, A., Habibian, F., Hayati, B.},
journal = {Archivum Mathematicum},
keywords = {Arens product; 2-weakly amenable; derivation; Arens product; 2-weakly amenable; derivation},
language = {eng},
number = {1},
pages = {39-44},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Weak$^*$-continuous derivations in dual Banach algebras},
url = {http://eudml.org/doc/246455},
volume = {048},
year = {2012},
}

TY - JOUR
AU - Eshaghi-Gordji, M.
AU - Ebadian, A.
AU - Habibian, F.
AU - Hayati, B.
TI - Weak$^*$-continuous derivations in dual Banach algebras
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 1
SP - 39
EP - 44
AB - Let $\mathcal {A}$ be a dual Banach algebra. We investigate the first weak$^*$-continuous cohomology group of $\mathcal {A}$ with coefficients in $\mathcal {A}$. Hence, we obtain conditions on ${\mathcal {A}}$ for which \[ H^1_{w^*}(\mathcal {A}, \mathcal {A})=\lbrace 0\rbrace \,. \]
LA - eng
KW - Arens product; 2-weakly amenable; derivation; Arens product; 2-weakly amenable; derivation
UR - http://eudml.org/doc/246455
ER -

References

top
  1. Arens, R., 10.1090/S0002-9939-1951-0045941-1, Proc. Amer. Math. Soc. 2 (1951), 839–848. (1951) Zbl0044.32601MR0045941DOI10.1090/S0002-9939-1951-0045941-1
  2. Bonsall, F. F., Duncan, J., Complete normed algebras, Springer, Berlin, 1973. (1973) Zbl0271.46039MR0423029
  3. Dales, H. G., Banach algebras and automatic continuity, Oxford, New York, 2000. (2000) Zbl0981.46043MR1816726
  4. Dales, H. G., Ghahramani, F., Grønbæk, N., Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), 19–54. (1998) MR1489459
  5. Dales, H. G., Lau, A. T. M., The second duals of Beurling algebras, Mem. Amer. Math. Soc. 177 (836) (2005). (2005) Zbl1075.43003MR2155972
  6. Daws, M., Connes–amenability of bidual algebras, Math. Scand. 99 (2) (2006), 217–246. (2006) MR2289023
  7. Daws, M., 10.4064/sm178-3-3, Studia Math. 178 (3) (2007), 231–275. (2007) Zbl1115.46038MR2289356DOI10.4064/sm178-3-3
  8. Despic, M., Ghahramani, F., 10.4153/CMB-1994-024-4, Canad. Math. Bull. 37 (1994), 165–167. (1994) Zbl0813.43001MR1275699DOI10.4153/CMB-1994-024-4
  9. Ghahramani, F., Laali, J., 10.1017/S0004972700020232, Bull. Austral. Math. Soc. 65 (2002), 191–197. (2002) MR1898533DOI10.1017/S0004972700020232
  10. Johnson, B. E., Cohomology in Banach algebras, Mem. Amer. Math Soc. 127 (1972). (1972) Zbl0256.18014MR0374934
  11. Johnson, B. E., 10.1112/blms/23.3.281, Bull. London Math. Soc. 23 (1991), 281–284. (1991) Zbl0757.43002MR1123339DOI10.1112/blms/23.3.281
  12. Lau, A. T. M., Ülger, A., 10.1090/S0002-9947-96-01499-7, Trans. Amer. Math. Soc. 348 (1996), 1191–1212. (1996) Zbl0859.43001MR1322952DOI10.1090/S0002-9947-96-01499-7
  13. Losert, V., 10.4007/annals.2008.168.221, Ann. of Math. (2) 168 (1) (2008), 221–246. (2008) Zbl1171.43004MR2415402DOI10.4007/annals.2008.168.221
  14. Runde, V., 10.4064/sm148-1-5, Studia Math. 148 (1) (2001), 47–66. (2001) Zbl1003.46028MR1881439DOI10.4064/sm148-1-5
  15. Runde, V., Lectures on amenability, Springer Verlag, Berlin–Heidelberg–New York, 2002. (2002) Zbl0999.46022MR1874893
  16. Sakai, S., C * –algebras and W * –algebras, Springer, New York, 1971. (1971) Zbl0233.46074MR0442701

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.