On some boundary value problems for second order nonlinear differential equations
Zuzana Došlá; Mauro Marini; Serena Matucci
Mathematica Bohemica (2012)
- Volume: 137, Issue: 2, page 113-122
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topDošlá, Zuzana, Marini, Mauro, and Matucci, Serena. "On some boundary value problems for second order nonlinear differential equations." Mathematica Bohemica 137.2 (2012): 113-122. <http://eudml.org/doc/246467>.
@article{Došlá2012,
abstract = {We investigate two boundary value problems for the second order differential equation with $p$-Laplacian \[ (a(t)\Phi \_\{p\}(x^\{\prime \}))^\{\prime \}=b(t)F(x), \quad t\in I=[0,\infty ), \]
where $a$, $b$ are continuous positive functions on $I$. We give necessary and sufficient conditions which guarantee the existence of a unique (or at least one) positive solution, satisfying one of the following two boundary conditions: \[ \{\rm i)\}\ x(0)=c>0, \ \lim \_\{t\rightarrow \infty \}x(t)=0; \quad \{\rm ii)\}\ x^\{\prime \}(0)=d<0, \ \lim \_\{t\rightarrow \infty \}x(t)=0. \]},
author = {Došlá, Zuzana, Marini, Mauro, Matucci, Serena},
journal = {Mathematica Bohemica},
keywords = {boundary value problem; $p$-Laplacian; half-linear equation; positive solution; uniqueness; decaying solution; principal solution; -Laplacian; boundary value problem; positive solution; noncompact interval},
language = {eng},
number = {2},
pages = {113-122},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On some boundary value problems for second order nonlinear differential equations},
url = {http://eudml.org/doc/246467},
volume = {137},
year = {2012},
}
TY - JOUR
AU - Došlá, Zuzana
AU - Marini, Mauro
AU - Matucci, Serena
TI - On some boundary value problems for second order nonlinear differential equations
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 2
SP - 113
EP - 122
AB - We investigate two boundary value problems for the second order differential equation with $p$-Laplacian \[ (a(t)\Phi _{p}(x^{\prime }))^{\prime }=b(t)F(x), \quad t\in I=[0,\infty ), \]
where $a$, $b$ are continuous positive functions on $I$. We give necessary and sufficient conditions which guarantee the existence of a unique (or at least one) positive solution, satisfying one of the following two boundary conditions: \[ {\rm i)}\ x(0)=c>0, \ \lim _{t\rightarrow \infty }x(t)=0; \quad {\rm ii)}\ x^{\prime }(0)=d<0, \ \lim _{t\rightarrow \infty }x(t)=0. \]
LA - eng
KW - boundary value problem; $p$-Laplacian; half-linear equation; positive solution; uniqueness; decaying solution; principal solution; -Laplacian; boundary value problem; positive solution; noncompact interval
UR - http://eudml.org/doc/246467
ER -
References
top- Agarwal, R. P, Grace, S. R., O'Regan, D., Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, Kluwer Acad., Dordrecht (2003). (2003) MR2091751
- Cecchi, M., Došlá, Z., Kiguradze, I., Marini, M., On nonnegative solutions of singular boundary value problems for Emden-Fowler type differential systems, Differ. Integral Equ. 20 (2007), 1081-1106. (2007) Zbl1212.34044MR2365203
- Cecchi, M., Došlá, Z., Marini, M., 10.1515/GMJ.2000.269, Georgian Math. J. 7 (2000), 269-282. (2000) MR1779551DOI10.1515/GMJ.2000.269
- Cecchi, M., Došlá, Z., Marini, M., On nonoscillatory solutions of differential equations with -Laplacian, Adv. Math. Sci. Appl. 11 (2001), 419-436. (2001) Zbl0996.34039MR1842385
- Cecchi, M., Došlá, Z., Marini, M., Principal solutions and minimal sets of quasilinear differential equations, Dynam. Systems Appl. 13 (2004), 221-232. (2004) Zbl1123.34026MR2140874
- Cecchi, M., Došlá, Z., Marini, M., Vrkoč, I., 10.1016/j.na.2005.06.035, Nonlinear Anal., Theory Methods Appl. 64 (2006), 1278-1289. (2006) Zbl1114.34031MR2200492DOI10.1016/j.na.2005.06.035
- Cecchi, M., Furi, M., Marini, M., 10.1016/0362-546X(85)90070-7, Nonlinear Anal., Theory Methods Appl. 9 (1985), 171-180. (1985) Zbl0563.34018MR0777986DOI10.1016/0362-546X(85)90070-7
- Chanturia, T. A., On singular solutions of nonlinear systems of ordinary differential equations, Colloq. Math. Soc. Janos Bolyai 15 (1975), 107-119. (1975) MR0591720
- Chanturia, T. A., On monotonic solutions of systems of nonlinear differential equations, Russian Ann. Polon. Math. 37 (1980), 59-70. (1980)
- Došlá, Z., Marini, M., Matucci, S., A boundary value problem on a half-line for differential equations with indefinite weight, (to appear) in Commun. Appl. Anal. MR2867356
- Došlý, O., Řehák, P., Half-Linear Differential Equations, North-Holland Mathematics Studies 202, Elsevier, Amsterdam (2005). (2005) Zbl1090.34001MR2158903
- Garcia, H. M., Manasevich, R., Yarur, C., 10.1016/j.jde.2005.04.012, J. Differ. Equations 223 (2006), 51-95. (2006) Zbl1170.35404MR2210139DOI10.1016/j.jde.2005.04.012
- Lian, H., Pang, H., Ge, W., 10.1016/j.na.2006.09.016, Nonlinear Anal., Theory Methods Appl. 67 (2007), 2199-2207. (2007) Zbl1128.34011MR2331870DOI10.1016/j.na.2006.09.016
- Mirzov, J. D., Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations, Folia Fac. Sci. Nat. Univ. Masaryk. Brun. Math. 14 (2004). (2004) Zbl1154.34300MR2144761
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.