On some boundary value problems for second order nonlinear differential equations

Zuzana Došlá; Mauro Marini; Serena Matucci

Mathematica Bohemica (2012)

  • Volume: 137, Issue: 2, page 113-122
  • ISSN: 0862-7959

Abstract

top
We investigate two boundary value problems for the second order differential equation with p -Laplacian ( a ( t ) Φ p ( x ' ) ) ' = b ( t ) F ( x ) , t I = [ 0 , ) , where a , b are continuous positive functions on I . We give necessary and sufficient conditions which guarantee the existence of a unique (or at least one) positive solution, satisfying one of the following two boundary conditions: i ) x ( 0 ) = c > 0 , lim t x ( t ) = 0 ; ii ) x ' ( 0 ) = d < 0 , lim t x ( t ) = 0 .

How to cite

top

Došlá, Zuzana, Marini, Mauro, and Matucci, Serena. "On some boundary value problems for second order nonlinear differential equations." Mathematica Bohemica 137.2 (2012): 113-122. <http://eudml.org/doc/246467>.

@article{Došlá2012,
abstract = {We investigate two boundary value problems for the second order differential equation with $p$-Laplacian \[ (a(t)\Phi \_\{p\}(x^\{\prime \}))^\{\prime \}=b(t)F(x), \quad t\in I=[0,\infty ), \] where $a$, $b$ are continuous positive functions on $I$. We give necessary and sufficient conditions which guarantee the existence of a unique (or at least one) positive solution, satisfying one of the following two boundary conditions: \[ \{\rm i)\}\ x(0)=c>0, \ \lim \_\{t\rightarrow \infty \}x(t)=0; \quad \{\rm ii)\}\ x^\{\prime \}(0)=d<0, \ \lim \_\{t\rightarrow \infty \}x(t)=0. \]},
author = {Došlá, Zuzana, Marini, Mauro, Matucci, Serena},
journal = {Mathematica Bohemica},
keywords = {boundary value problem; $p$-Laplacian; half-linear equation; positive solution; uniqueness; decaying solution; principal solution; -Laplacian; boundary value problem; positive solution; noncompact interval},
language = {eng},
number = {2},
pages = {113-122},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On some boundary value problems for second order nonlinear differential equations},
url = {http://eudml.org/doc/246467},
volume = {137},
year = {2012},
}

TY - JOUR
AU - Došlá, Zuzana
AU - Marini, Mauro
AU - Matucci, Serena
TI - On some boundary value problems for second order nonlinear differential equations
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 2
SP - 113
EP - 122
AB - We investigate two boundary value problems for the second order differential equation with $p$-Laplacian \[ (a(t)\Phi _{p}(x^{\prime }))^{\prime }=b(t)F(x), \quad t\in I=[0,\infty ), \] where $a$, $b$ are continuous positive functions on $I$. We give necessary and sufficient conditions which guarantee the existence of a unique (or at least one) positive solution, satisfying one of the following two boundary conditions: \[ {\rm i)}\ x(0)=c>0, \ \lim _{t\rightarrow \infty }x(t)=0; \quad {\rm ii)}\ x^{\prime }(0)=d<0, \ \lim _{t\rightarrow \infty }x(t)=0. \]
LA - eng
KW - boundary value problem; $p$-Laplacian; half-linear equation; positive solution; uniqueness; decaying solution; principal solution; -Laplacian; boundary value problem; positive solution; noncompact interval
UR - http://eudml.org/doc/246467
ER -

References

top
  1. Agarwal, R. P, Grace, S. R., O'Regan, D., Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, Kluwer Acad., Dordrecht (2003). (2003) MR2091751
  2. Cecchi, M., Došlá, Z., Kiguradze, I., Marini, M., On nonnegative solutions of singular boundary value problems for Emden-Fowler type differential systems, Differ. Integral Equ. 20 (2007), 1081-1106. (2007) Zbl1212.34044MR2365203
  3. Cecchi, M., Došlá, Z., Marini, M., 10.1515/GMJ.2000.269, Georgian Math. J. 7 (2000), 269-282. (2000) MR1779551DOI10.1515/GMJ.2000.269
  4. Cecchi, M., Došlá, Z., Marini, M., On nonoscillatory solutions of differential equations with p -Laplacian, Adv. Math. Sci. Appl. 11 (2001), 419-436. (2001) Zbl0996.34039MR1842385
  5. Cecchi, M., Došlá, Z., Marini, M., Principal solutions and minimal sets of quasilinear differential equations, Dynam. Systems Appl. 13 (2004), 221-232. (2004) Zbl1123.34026MR2140874
  6. Cecchi, M., Došlá, Z., Marini, M., Vrkoč, I., 10.1016/j.na.2005.06.035, Nonlinear Anal., Theory Methods Appl. 64 (2006), 1278-1289. (2006) Zbl1114.34031MR2200492DOI10.1016/j.na.2005.06.035
  7. Cecchi, M., Furi, M., Marini, M., 10.1016/0362-546X(85)90070-7, Nonlinear Anal., Theory Methods Appl. 9 (1985), 171-180. (1985) Zbl0563.34018MR0777986DOI10.1016/0362-546X(85)90070-7
  8. Chanturia, T. A., On singular solutions of nonlinear systems of ordinary differential equations, Colloq. Math. Soc. Janos Bolyai 15 (1975), 107-119. (1975) MR0591720
  9. Chanturia, T. A., On monotonic solutions of systems of nonlinear differential equations, Russian Ann. Polon. Math. 37 (1980), 59-70. (1980) 
  10. Došlá, Z., Marini, M., Matucci, S., A boundary value problem on a half-line for differential equations with indefinite weight, (to appear) in Commun. Appl. Anal. MR2867356
  11. Došlý, O., Řehák, P., Half-Linear Differential Equations, North-Holland Mathematics Studies 202, Elsevier, Amsterdam (2005). (2005) Zbl1090.34001MR2158903
  12. Garcia, H. M., Manasevich, R., Yarur, C., 10.1016/j.jde.2005.04.012, J. Differ. Equations 223 (2006), 51-95. (2006) Zbl1170.35404MR2210139DOI10.1016/j.jde.2005.04.012
  13. Lian, H., Pang, H., Ge, W., 10.1016/j.na.2006.09.016, Nonlinear Anal., Theory Methods Appl. 67 (2007), 2199-2207. (2007) Zbl1128.34011MR2331870DOI10.1016/j.na.2006.09.016
  14. Mirzov, J. D., Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations, Folia Fac. Sci. Nat. Univ. Masaryk. Brun. Math. 14 (2004). (2004) Zbl1154.34300MR2144761

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.