Julia lines of general random Dirichlet series
Qiyu Jin; Guantie Deng; Daochun Sun
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 4, page 919-936
 - ISSN: 0011-4642
 
Access Full Article
topAbstract
topHow to cite
topJin, Qiyu, Deng, Guantie, and Sun, Daochun. "Julia lines of general random Dirichlet series." Czechoslovak Mathematical Journal 62.4 (2012): 919-936. <http://eudml.org/doc/246481>.
@article{Jin2012,
	abstract = {In this paper, we consider a random entire function $f(s,\omega )$ defined by a random Dirichlet series $\sum \nolimits _\{n=1\}^\{\infty \}X_n(\omega ) \{\rm e\} ^\{-\lambda _n s\}$ where $X_n$ are independent and complex valued variables, $0\le \lambda _n \nearrow +\infty $. We prove that under natural conditions, for some random entire functions of order $(R)$ zero $f(s,\omega )$ almost surely every horizontal line is a Julia line without an exceptional value. The result improve a theorem of J. R. Yu: Julia lines of random Dirichlet series. Bull. Sci. Math. 128 (2004), 341–353, by relaxing condition on the distribution of $X_n$ for such function $f(s,\omega )$ of order $(R)$ zero, almost surely.},
	author = {Jin, Qiyu, Deng, Guantie, Sun, Daochun},
	journal = {Czechoslovak Mathematical Journal},
	keywords = {random Dirichlet series; order $(R)$; Julia lines; entire function; random Dirichlet series; Julia lines; entire function},
	language = {eng},
	number = {4},
	pages = {919-936},
	publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
	title = {Julia lines of general random Dirichlet series},
	url = {http://eudml.org/doc/246481},
	volume = {62},
	year = {2012},
}
TY  - JOUR
AU  - Jin, Qiyu
AU  - Deng, Guantie
AU  - Sun, Daochun
TI  - Julia lines of general random Dirichlet series
JO  - Czechoslovak Mathematical Journal
PY  - 2012
PB  - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL  - 62
IS  - 4
SP  - 919
EP  - 936
AB  - In this paper, we consider a random entire function $f(s,\omega )$ defined by a random Dirichlet series $\sum \nolimits _{n=1}^{\infty }X_n(\omega ) {\rm e} ^{-\lambda _n s}$ where $X_n$ are independent and complex valued variables, $0\le \lambda _n \nearrow +\infty $. We prove that under natural conditions, for some random entire functions of order $(R)$ zero $f(s,\omega )$ almost surely every horizontal line is a Julia line without an exceptional value. The result improve a theorem of J. R. Yu: Julia lines of random Dirichlet series. Bull. Sci. Math. 128 (2004), 341–353, by relaxing condition on the distribution of $X_n$ for such function $f(s,\omega )$ of order $(R)$ zero, almost surely.
LA  - eng
KW  - random Dirichlet series; order $(R)$; Julia lines; entire function; random Dirichlet series; Julia lines; entire function
UR  - http://eudml.org/doc/246481
ER  - 
References
top- Davies, P. L., 10.1112/plms/s3-26.1.99, Proc. Lond. Math. Soc., III. Ser. 26 (1973), 99-141. (1973) Zbl0266.60048MR0318458DOI10.1112/plms/s3-26.1.99
 - Ding, X., Yu, J., 10.1016/S0007-4497(00)00134-2, Bull. Sci. Math. 124 (2000), 225-238. (2000) Zbl0949.30005MR1753265DOI10.1016/S0007-4497(00)00134-2
 - Kahane, J.-P., Some Random Series of Functions, 2nd Cambridge University Press, Cambridge (1985). (1985) Zbl0571.60002MR0833073
 - Littlewood, J. E., Offord, A. C., 10.2307/1969404, Ann. Math. 49 (1948), 885-952; Errata Ann. Math. 50 (1949), 990-991. (1949) Zbl0034.34305MR0029981DOI10.2307/1969404
 - Nevanlinna, R., Le Théoreme de Picard-Borel et la Théorie des Functions Méromorphes, French Gauthier-Villiars, Paris (1929). (1929)
 - Paley, R. E. A. C., Zygmund, A., 10.1017/S0305004100016078, Proceedings Cambridge Philos. Soc. 26 (1930), 337-357, 458-474. (1930) DOI10.1017/S0305004100016078
 - Paley, R. E. A. C., Zygmund, A., 10.1017/S0305004100010860, Proc. Camb. Philos. Soc. 28 (1932), 190-205. (1932) Zbl0006.19802DOI10.1017/S0305004100010860
 - Sun, D. C., Yu, J. R., Sur la distribution des valeurs de certaines séries aléatoires de Dirichlet. II, French C. R. Acad. Sci., Paris, Sér. I 308 (1989), 205-207. (1989) Zbl0678.60033MR0986380
 - Sun, D. C., Yu, J. R., On the distribution of values of random Dirichlet series. II, Chin. Ann. Math., Ser. B 11 (1990), 33-44. (1990) Zbl0739.30026MR1048968
 - Tian, F. J., Sun, D. C., Yu, J. R., On random Dirichlet series. (Sur les séries aléatoires de Dirichlet), French. Abridged English version C. R. Acad. Sci., Paris, Sér. I, Math. 326 (1998), 427-431. (1998) Zbl0920.30005MR1648963
 - Yu, C.-Y., 10.24033/asens.986, Ann. Sci. Éc. Norm. Supér., III. Sér. 68 (1951), 65-104 French. (1951) Zbl0045.03802MR0041223DOI10.24033/asens.986
 - Yu, J. R., Some properties of random Dirichlet series, Acta Math. Sin. 21 (1978), 97-118 Chinese. (1978) Zbl0386.60044MR0507192
 - Yu, J. R., Sur quelques séries gaussiennes de Dirichlet. (On some gaussian Dirichlet series), C. R. Acad. Sci., Paris, Sér. I 300 (1985), 521-522 French. (1985) Zbl0606.30003MR0792380
 - Yu, J. R., Borel lines of random Dirichlet series, Acta Math. Sci., Ser. B, Engl. Ed. 22 (2002), 1-8. (2002) Zbl0999.30008MR1883873
 - Yu, J. R., 10.1016/j.bulsci.2004.02.005, Bull. Sci. Math. 128 (2004), 341-353. (2004) Zbl1059.60011MR2066344DOI10.1016/j.bulsci.2004.02.005
 - Yu, J. R., Sun, D. C., On the distribution of values of random Dirichlet series. I, Lectures on complex analysis, Proc. Symp., Xian/China 1987 67-95 (1988). (1988) Zbl0739.30025MR0996468
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.