Julia lines of general random Dirichlet series

Qiyu Jin; Guantie Deng; Daochun Sun

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 4, page 919-936
  • ISSN: 0011-4642

Abstract

top
In this paper, we consider a random entire function f ( s , ω ) defined by a random Dirichlet series n = 1 X n ( ω ) e - λ n s where X n are independent and complex valued variables, 0 λ n + . We prove that under natural conditions, for some random entire functions of order ( R ) zero f ( s , ω ) almost surely every horizontal line is a Julia line without an exceptional value. The result improve a theorem of J. R. Yu: Julia lines of random Dirichlet series. Bull. Sci. Math. 128 (2004), 341–353, by relaxing condition on the distribution of X n for such function f ( s , ω ) of order ( R ) zero, almost surely.

How to cite

top

Jin, Qiyu, Deng, Guantie, and Sun, Daochun. "Julia lines of general random Dirichlet series." Czechoslovak Mathematical Journal 62.4 (2012): 919-936. <http://eudml.org/doc/246481>.

@article{Jin2012,
abstract = {In this paper, we consider a random entire function $f(s,\omega )$ defined by a random Dirichlet series $\sum \nolimits _\{n=1\}^\{\infty \}X_n(\omega ) \{\rm e\} ^\{-\lambda _n s\}$ where $X_n$ are independent and complex valued variables, $0\le \lambda _n \nearrow +\infty $. We prove that under natural conditions, for some random entire functions of order $(R)$ zero $f(s,\omega )$ almost surely every horizontal line is a Julia line without an exceptional value. The result improve a theorem of J. R. Yu: Julia lines of random Dirichlet series. Bull. Sci. Math. 128 (2004), 341–353, by relaxing condition on the distribution of $X_n$ for such function $f(s,\omega )$ of order $(R)$ zero, almost surely.},
author = {Jin, Qiyu, Deng, Guantie, Sun, Daochun},
journal = {Czechoslovak Mathematical Journal},
keywords = {random Dirichlet series; order $(R)$; Julia lines; entire function; random Dirichlet series; Julia lines; entire function},
language = {eng},
number = {4},
pages = {919-936},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Julia lines of general random Dirichlet series},
url = {http://eudml.org/doc/246481},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Jin, Qiyu
AU - Deng, Guantie
AU - Sun, Daochun
TI - Julia lines of general random Dirichlet series
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 919
EP - 936
AB - In this paper, we consider a random entire function $f(s,\omega )$ defined by a random Dirichlet series $\sum \nolimits _{n=1}^{\infty }X_n(\omega ) {\rm e} ^{-\lambda _n s}$ where $X_n$ are independent and complex valued variables, $0\le \lambda _n \nearrow +\infty $. We prove that under natural conditions, for some random entire functions of order $(R)$ zero $f(s,\omega )$ almost surely every horizontal line is a Julia line without an exceptional value. The result improve a theorem of J. R. Yu: Julia lines of random Dirichlet series. Bull. Sci. Math. 128 (2004), 341–353, by relaxing condition on the distribution of $X_n$ for such function $f(s,\omega )$ of order $(R)$ zero, almost surely.
LA - eng
KW - random Dirichlet series; order $(R)$; Julia lines; entire function; random Dirichlet series; Julia lines; entire function
UR - http://eudml.org/doc/246481
ER -

References

top
  1. Davies, P. L., 10.1112/plms/s3-26.1.99, Proc. Lond. Math. Soc., III. Ser. 26 (1973), 99-141. (1973) Zbl0266.60048MR0318458DOI10.1112/plms/s3-26.1.99
  2. Ding, X., Yu, J., 10.1016/S0007-4497(00)00134-2, Bull. Sci. Math. 124 (2000), 225-238. (2000) Zbl0949.30005MR1753265DOI10.1016/S0007-4497(00)00134-2
  3. Kahane, J.-P., Some Random Series of Functions, 2nd Cambridge University Press, Cambridge (1985). (1985) Zbl0571.60002MR0833073
  4. Littlewood, J. E., Offord, A. C., 10.2307/1969404, Ann. Math. 49 (1948), 885-952; Errata Ann. Math. 50 (1949), 990-991. (1949) Zbl0034.34305MR0029981DOI10.2307/1969404
  5. Nevanlinna, R., Le Théoreme de Picard-Borel et la Théorie des Functions Méromorphes, French Gauthier-Villiars, Paris (1929). (1929) 
  6. Paley, R. E. A. C., Zygmund, A., 10.1017/S0305004100016078, Proceedings Cambridge Philos. Soc. 26 (1930), 337-357, 458-474. (1930) DOI10.1017/S0305004100016078
  7. Paley, R. E. A. C., Zygmund, A., 10.1017/S0305004100010860, Proc. Camb. Philos. Soc. 28 (1932), 190-205. (1932) Zbl0006.19802DOI10.1017/S0305004100010860
  8. Sun, D. C., Yu, J. R., Sur la distribution des valeurs de certaines séries aléatoires de Dirichlet. II, French C. R. Acad. Sci., Paris, Sér. I 308 (1989), 205-207. (1989) Zbl0678.60033MR0986380
  9. Sun, D. C., Yu, J. R., On the distribution of values of random Dirichlet series. II, Chin. Ann. Math., Ser. B 11 (1990), 33-44. (1990) Zbl0739.30026MR1048968
  10. Tian, F. J., Sun, D. C., Yu, J. R., On random Dirichlet series. (Sur les séries aléatoires de Dirichlet), French. Abridged English version C. R. Acad. Sci., Paris, Sér. I, Math. 326 (1998), 427-431. (1998) Zbl0920.30005MR1648963
  11. Yu, C.-Y., 10.24033/asens.986, Ann. Sci. Éc. Norm. Supér., III. Sér. 68 (1951), 65-104 French. (1951) Zbl0045.03802MR0041223DOI10.24033/asens.986
  12. Yu, J. R., Some properties of random Dirichlet series, Acta Math. Sin. 21 (1978), 97-118 Chinese. (1978) Zbl0386.60044MR0507192
  13. Yu, J. R., Sur quelques séries gaussiennes de Dirichlet. (On some gaussian Dirichlet series), C. R. Acad. Sci., Paris, Sér. I 300 (1985), 521-522 French. (1985) Zbl0606.30003MR0792380
  14. Yu, J. R., Borel lines of random Dirichlet series, Acta Math. Sci., Ser. B, Engl. Ed. 22 (2002), 1-8. (2002) Zbl0999.30008MR1883873
  15. Yu, J. R., 10.1016/j.bulsci.2004.02.005, Bull. Sci. Math. 128 (2004), 341-353. (2004) Zbl1059.60011MR2066344DOI10.1016/j.bulsci.2004.02.005
  16. Yu, J. R., Sun, D. C., On the distribution of values of random Dirichlet series. I, Lectures on complex analysis, Proc. Symp., Xian/China 1987 67-95 (1988). (1988) Zbl0739.30025MR0996468

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.