On the completeness of the system { t λ n log m n t } in C 0 ( E )

Xiangdong Yang

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 2, page 361-379
  • ISSN: 0011-4642

Abstract

top
Let E = n = 1 I n be the union of infinitely many disjoint closed intervals where I n = [ a n , b n ] , 0 < a 1 < b 1 < a 2 < b 2 < < b n < , lim n b n = . Let α ( t ) be a nonnegative function and { λ n } n = 1 a sequence of distinct complex numbers. In this paper, a theorem on the completeness of the system { t λ n log m n t } in C 0 ( E ) is obtained where C 0 ( E ) is the weighted Banach space consists of complex functions continuous on E with f ( t ) e - α ( t ) vanishing at infinity.

How to cite

top

Yang, Xiangdong. "On the completeness of the system $\lbrace t^{\lambda _{n}}\log ^{m_{n}}t\rbrace $ in $C_{0}(E)$." Czechoslovak Mathematical Journal 62.2 (2012): 361-379. <http://eudml.org/doc/246485>.

@article{Yang2012,
abstract = {Let $E=\bigcup _\{n=1\}^\{\infty \}I_\{n\}$ be the union of infinitely many disjoint closed intervals where $I_\{n\}=[a_\{n\}$, $b_\{n\}]$, $0<a_\{1\}<b_\{1\}<a_\{2\}<b_\{2\}<\dots <b_\{n\}<\dots $, $\lim _\{n\rightarrow \infty \}b_\{n\}=\infty .$ Let $\alpha (t)$ be a nonnegative function and $\lbrace \lambda _\{n\}\rbrace _\{n=1\}^\{\infty \}$ a sequence of distinct complex numbers. In this paper, a theorem on the completeness of the system $\lbrace t^\{\lambda _\{n\}\}\log ^\{m_\{n\}\}t\rbrace $ in $C_\{0\}(E)$ is obtained where $C_\{0\}(E)$ is the weighted Banach space consists of complex functions continuous on $E$ with $f(t)\{\rm e\}^\{-\alpha (t)\}$ vanishing at infinity.},
author = {Yang, Xiangdong},
journal = {Czechoslovak Mathematical Journal},
keywords = {completeness; Banach space; complex Müntz theorem; completeness; Banach space; complex Müntz theorem},
language = {eng},
number = {2},
pages = {361-379},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the completeness of the system $\lbrace t^\{\lambda _\{n\}\}\log ^\{m_\{n\}\}t\rbrace $ in $C_\{0\}(E)$},
url = {http://eudml.org/doc/246485},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Yang, Xiangdong
TI - On the completeness of the system $\lbrace t^{\lambda _{n}}\log ^{m_{n}}t\rbrace $ in $C_{0}(E)$
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 361
EP - 379
AB - Let $E=\bigcup _{n=1}^{\infty }I_{n}$ be the union of infinitely many disjoint closed intervals where $I_{n}=[a_{n}$, $b_{n}]$, $0<a_{1}<b_{1}<a_{2}<b_{2}<\dots <b_{n}<\dots $, $\lim _{n\rightarrow \infty }b_{n}=\infty .$ Let $\alpha (t)$ be a nonnegative function and $\lbrace \lambda _{n}\rbrace _{n=1}^{\infty }$ a sequence of distinct complex numbers. In this paper, a theorem on the completeness of the system $\lbrace t^{\lambda _{n}}\log ^{m_{n}}t\rbrace $ in $C_{0}(E)$ is obtained where $C_{0}(E)$ is the weighted Banach space consists of complex functions continuous on $E$ with $f(t){\rm e}^{-\alpha (t)}$ vanishing at infinity.
LA - eng
KW - completeness; Banach space; complex Müntz theorem; completeness; Banach space; complex Müntz theorem
UR - http://eudml.org/doc/246485
ER -

References

top
  1. Boivin, A., Zhu, Ch., On the completeness of the system { z τ n } in L 2 , J. Approximation Theory 118 (2002), 1-19. (2002) MR1928254
  2. Borichev, A. A., Sodin, M., 10.1215/ijm/1258138261, Ill. J. Math. 45 (2001), 167-185. (2001) Zbl0989.41003MR1849992DOI10.1215/ijm/1258138261
  3. Borwein, P., Erdélyi, T., Polynomials and Polynomial Inequalities, Springer-Verlag, New York (1995). (1995) Zbl0840.26002MR1367960
  4. Branges, L. de, 10.1090/S0002-9939-1959-0114080-0, Proc. Am. Math. Soc. 10 (1959), 825-832. (1959) Zbl0092.06905MR0114080DOI10.1090/S0002-9939-1959-0114080-0
  5. Deng, G. T., 10.1016/j.jat.2003.09.004, J. Approximation Theory 125 (2003), 1-9. (2003) Zbl1036.30002MR2016836DOI10.1016/j.jat.2003.09.004
  6. Deng, G. T., 10.1017/S0027763000009119, Nagoya Math. J. 178 (2005), 55-61. (2005) Zbl1082.41017MR2145315DOI10.1017/S0027763000009119
  7. Deng, G. T., 10.1007/s11425-007-0093-5, Sci. China, Ser. A 50 (2007), 1467-1476. (2007) Zbl1130.30028MR2390463DOI10.1007/s11425-007-0093-5
  8. Halmos, P. R., Measure Theory, 2nd printing, Graduate Texts in Mathematics. 18, Springer-Verlag, New York-Heidelberg-Berlin (1974). (1974) MR0453532
  9. Izumi, S.-I., Kawata, T., Quasi-analytic class and closure of { t n } in the interval ( - , ) , Tohoku Math. J. 43 (1937), 267-273. (1937) 
  10. Levin, B. Y., 10.1090/mmono/150/28, Providence RI., American Mathematical Society (1996). (1996) MR1400006DOI10.1090/mmono/150/28
  11. Malliavin, P., 10.1007/BF02392523, Acta Math. 83 (1955), 179-255. (1955) Zbl0067.05104MR0075297DOI10.1007/BF02392523
  12. Mergelyan, S. N., On the completeness of system of analytic functions, Amer. Math. Soc. Transl. Ser. 2 (1962), 109-166. (1962) MR0131561
  13. Markushevich, A. I., Theory of Functions of a Complex Variable, Selected Russian Publications in the Mathematical Sciences, Prentice-Hall (1965). (1965) 
  14. Rudin, W., Real and Complex Analysis, 3rd. ed, McGraw-Hill, New York (1987). (1987) Zbl0925.00005MR0924157
  15. Sedletskij, A. M., Nonharmonic analysis, J. Math. Sci., New York 116 (2003), 3551-3619. (2003) Zbl1051.42018MR2024093
  16. Shen, X., On the closure { z τ n log j z } in a domain of the complex plane, Acta Math. Sinica 13 (1963), 405-418 Chinese Chinese Math. 4 (1963), 440-453 English. (1963) 
  17. Shen, X., On the completeness of { z τ n log j z } on an unbounded curve of the complex plane, Acta Math. Sinica 13 (1963), 170-192 Chinese Chinese Math. 12 (1963), 921-950 English. (1963) 
  18. Shen, X., On approximation of functions in the complex plane by the system of functions { z τ n log j z } , Acta Math. Sinica 14 (1964), 406-414 Chinese Chinese Math. 5 (1965), 439-446 English. (1965) MR0179534
  19. Yang, X. D., 10.1016/j.jat.2008.01.004, J. Approx. Theory 153 (2008), 73-79. (2008) Zbl1149.30025MR2432554DOI10.1016/j.jat.2008.01.004
  20. Zhu, Ch., Some Results in Complex Approximation with Sequence of Complex Exponents, Thesis of the University of Werstern Ontario, Canada (1999). (1999) 
  21. Zikkos, E., 10.1080/02781070500032804, Complex Variables, Theory Appl. 50 (2005), 229-255. (2005) MR2125918DOI10.1080/02781070500032804

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.