On the completeness of the system in
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 2, page 361-379
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYang, Xiangdong. "On the completeness of the system $\lbrace t^{\lambda _{n}}\log ^{m_{n}}t\rbrace $ in $C_{0}(E)$." Czechoslovak Mathematical Journal 62.2 (2012): 361-379. <http://eudml.org/doc/246485>.
@article{Yang2012,
abstract = {Let $E=\bigcup _\{n=1\}^\{\infty \}I_\{n\}$ be the union of infinitely many disjoint closed intervals where $I_\{n\}=[a_\{n\}$, $b_\{n\}]$, $0<a_\{1\}<b_\{1\}<a_\{2\}<b_\{2\}<\dots <b_\{n\}<\dots $, $\lim _\{n\rightarrow \infty \}b_\{n\}=\infty .$ Let $\alpha (t)$ be a nonnegative function and $\lbrace \lambda _\{n\}\rbrace _\{n=1\}^\{\infty \}$ a sequence of distinct complex numbers. In this paper, a theorem on the completeness of the system $\lbrace t^\{\lambda _\{n\}\}\log ^\{m_\{n\}\}t\rbrace $ in $C_\{0\}(E)$ is obtained where $C_\{0\}(E)$ is the weighted Banach space consists of complex functions continuous on $E$ with $f(t)\{\rm e\}^\{-\alpha (t)\}$ vanishing at infinity.},
author = {Yang, Xiangdong},
journal = {Czechoslovak Mathematical Journal},
keywords = {completeness; Banach space; complex Müntz theorem; completeness; Banach space; complex Müntz theorem},
language = {eng},
number = {2},
pages = {361-379},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the completeness of the system $\lbrace t^\{\lambda _\{n\}\}\log ^\{m_\{n\}\}t\rbrace $ in $C_\{0\}(E)$},
url = {http://eudml.org/doc/246485},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Yang, Xiangdong
TI - On the completeness of the system $\lbrace t^{\lambda _{n}}\log ^{m_{n}}t\rbrace $ in $C_{0}(E)$
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 361
EP - 379
AB - Let $E=\bigcup _{n=1}^{\infty }I_{n}$ be the union of infinitely many disjoint closed intervals where $I_{n}=[a_{n}$, $b_{n}]$, $0<a_{1}<b_{1}<a_{2}<b_{2}<\dots <b_{n}<\dots $, $\lim _{n\rightarrow \infty }b_{n}=\infty .$ Let $\alpha (t)$ be a nonnegative function and $\lbrace \lambda _{n}\rbrace _{n=1}^{\infty }$ a sequence of distinct complex numbers. In this paper, a theorem on the completeness of the system $\lbrace t^{\lambda _{n}}\log ^{m_{n}}t\rbrace $ in $C_{0}(E)$ is obtained where $C_{0}(E)$ is the weighted Banach space consists of complex functions continuous on $E$ with $f(t){\rm e}^{-\alpha (t)}$ vanishing at infinity.
LA - eng
KW - completeness; Banach space; complex Müntz theorem; completeness; Banach space; complex Müntz theorem
UR - http://eudml.org/doc/246485
ER -
References
top- Boivin, A., Zhu, Ch., On the completeness of the system in , J. Approximation Theory 118 (2002), 1-19. (2002) MR1928254
- Borichev, A. A., Sodin, M., 10.1215/ijm/1258138261, Ill. J. Math. 45 (2001), 167-185. (2001) Zbl0989.41003MR1849992DOI10.1215/ijm/1258138261
- Borwein, P., Erdélyi, T., Polynomials and Polynomial Inequalities, Springer-Verlag, New York (1995). (1995) Zbl0840.26002MR1367960
- Branges, L. de, 10.1090/S0002-9939-1959-0114080-0, Proc. Am. Math. Soc. 10 (1959), 825-832. (1959) Zbl0092.06905MR0114080DOI10.1090/S0002-9939-1959-0114080-0
- Deng, G. T., 10.1016/j.jat.2003.09.004, J. Approximation Theory 125 (2003), 1-9. (2003) Zbl1036.30002MR2016836DOI10.1016/j.jat.2003.09.004
- Deng, G. T., 10.1017/S0027763000009119, Nagoya Math. J. 178 (2005), 55-61. (2005) Zbl1082.41017MR2145315DOI10.1017/S0027763000009119
- Deng, G. T., 10.1007/s11425-007-0093-5, Sci. China, Ser. A 50 (2007), 1467-1476. (2007) Zbl1130.30028MR2390463DOI10.1007/s11425-007-0093-5
- Halmos, P. R., Measure Theory, 2nd printing, Graduate Texts in Mathematics. 18, Springer-Verlag, New York-Heidelberg-Berlin (1974). (1974) MR0453532
- Izumi, S.-I., Kawata, T., Quasi-analytic class and closure of in the interval , Tohoku Math. J. 43 (1937), 267-273. (1937)
- Levin, B. Y., 10.1090/mmono/150/28, Providence RI., American Mathematical Society (1996). (1996) MR1400006DOI10.1090/mmono/150/28
- Malliavin, P., 10.1007/BF02392523, Acta Math. 83 (1955), 179-255. (1955) Zbl0067.05104MR0075297DOI10.1007/BF02392523
- Mergelyan, S. N., On the completeness of system of analytic functions, Amer. Math. Soc. Transl. Ser. 2 (1962), 109-166. (1962) MR0131561
- Markushevich, A. I., Theory of Functions of a Complex Variable, Selected Russian Publications in the Mathematical Sciences, Prentice-Hall (1965). (1965)
- Rudin, W., Real and Complex Analysis, 3rd. ed, McGraw-Hill, New York (1987). (1987) Zbl0925.00005MR0924157
- Sedletskij, A. M., Nonharmonic analysis, J. Math. Sci., New York 116 (2003), 3551-3619. (2003) Zbl1051.42018MR2024093
- Shen, X., On the closure in a domain of the complex plane, Acta Math. Sinica 13 (1963), 405-418 Chinese Chinese Math. 4 (1963), 440-453 English. (1963)
- Shen, X., On the completeness of on an unbounded curve of the complex plane, Acta Math. Sinica 13 (1963), 170-192 Chinese Chinese Math. 12 (1963), 921-950 English. (1963)
- Shen, X., On approximation of functions in the complex plane by the system of functions , Acta Math. Sinica 14 (1964), 406-414 Chinese Chinese Math. 5 (1965), 439-446 English. (1965) MR0179534
- Yang, X. D., 10.1016/j.jat.2008.01.004, J. Approx. Theory 153 (2008), 73-79. (2008) Zbl1149.30025MR2432554DOI10.1016/j.jat.2008.01.004
- Zhu, Ch., Some Results in Complex Approximation with Sequence of Complex Exponents, Thesis of the University of Werstern Ontario, Canada (1999). (1999)
- Zikkos, E., 10.1080/02781070500032804, Complex Variables, Theory Appl. 50 (2005), 229-255. (2005) MR2125918DOI10.1080/02781070500032804
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.