Bounds for the (Laplacian) spectral radius of graphs with parameter α

Gui-Xian Tian; Ting-Zhu Huang

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 2, page 567-580
  • ISSN: 0011-4642

Abstract

top
Let G be a simple connected graph of order n with degree sequence ( d 1 , d 2 , ... , d n ) . Denote ( α t ) i = j : i j d j α , ( α m ) i = ( α t ) i / d i α and ( α N ) i = j : i j ( α t ) j , where α is a real number. Denote by λ 1 ( G ) and μ 1 ( G ) the spectral radius of the adjacency matrix and the Laplacian matrix of G , respectively. In this paper, we present some upper and lower bounds of λ 1 ( G ) and μ 1 ( G ) in terms of ( α t ) i , ( α m ) i and ( α N ) i . Furthermore, we also characterize some extreme graphs which attain these upper bounds. These results theoretically improve and generalize some known results.

How to cite

top

Tian, Gui-Xian, and Huang, Ting-Zhu. "Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $." Czechoslovak Mathematical Journal 62.2 (2012): 567-580. <http://eudml.org/doc/246489>.

@article{Tian2012,
abstract = {Let $G$ be a simple connected graph of order $n$ with degree sequence $(d_1,d_2,\ldots ,d_n)$. Denote $(^\alpha t)_i = \sum \nolimits _\{j\colon i \sim j\} \{d_j^\alpha \}$, $(^\alpha m)_i = \{(^\alpha t)_i \}/\{d_i^\alpha \}$ and $(^\alpha N)_i = \sum \nolimits _\{j\colon i \sim j\} \{(^\alpha t)_j \}$, where $\alpha $ is a real number. Denote by $\lambda _1(G)$ and $\mu _1(G)$ the spectral radius of the adjacency matrix and the Laplacian matrix of $G$, respectively. In this paper, we present some upper and lower bounds of $\lambda _1(G)$ and $\mu _1(G)$ in terms of $(^\alpha t)_i $, $(^\alpha m)_i $ and $(^\alpha N)_i $. Furthermore, we also characterize some extreme graphs which attain these upper bounds. These results theoretically improve and generalize some known results.},
author = {Tian, Gui-Xian, Huang, Ting-Zhu},
journal = {Czechoslovak Mathematical Journal},
keywords = {graph; adjacency matrix; Laplacian matrix; spectral radius; bound; adjacency matrix; Laplacian matrix; spectral radius},
language = {eng},
number = {2},
pages = {567-580},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $},
url = {http://eudml.org/doc/246489},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Tian, Gui-Xian
AU - Huang, Ting-Zhu
TI - Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 567
EP - 580
AB - Let $G$ be a simple connected graph of order $n$ with degree sequence $(d_1,d_2,\ldots ,d_n)$. Denote $(^\alpha t)_i = \sum \nolimits _{j\colon i \sim j} {d_j^\alpha }$, $(^\alpha m)_i = {(^\alpha t)_i }/{d_i^\alpha }$ and $(^\alpha N)_i = \sum \nolimits _{j\colon i \sim j} {(^\alpha t)_j }$, where $\alpha $ is a real number. Denote by $\lambda _1(G)$ and $\mu _1(G)$ the spectral radius of the adjacency matrix and the Laplacian matrix of $G$, respectively. In this paper, we present some upper and lower bounds of $\lambda _1(G)$ and $\mu _1(G)$ in terms of $(^\alpha t)_i $, $(^\alpha m)_i $ and $(^\alpha N)_i $. Furthermore, we also characterize some extreme graphs which attain these upper bounds. These results theoretically improve and generalize some known results.
LA - eng
KW - graph; adjacency matrix; Laplacian matrix; spectral radius; bound; adjacency matrix; Laplacian matrix; spectral radius
UR - http://eudml.org/doc/246489
ER -

References

top
  1. Berman, A., Zhang, X.-D., 10.1006/jctb.2001.2052, J. Combin. Theory, Ser. B 83 (2001), 233-240. (2001) Zbl1023.05098MR1866719DOI10.1006/jctb.2001.2052
  2. Brankov, V., Hansen, P., Stevanović, D., Automated cunjectures on upper bounds for the largest Laplacian eigenvalue of graphs, Linear Algebra Appl. 414 (2006), 407-424. (2006) MR2213408
  3. Cvetković, D., Doob, M., Sachs, H., Spectra of Graphs. Theory and Application, Deutscher Verlag der Wissenschaften Berlin (1980). (1980) Zbl0458.05042MR0572262
  4. Das, K. C., Kumar, P., 10.1016/j.disc.2003.08.005, Discrete Math. 281 (2004), 149-161. (2004) Zbl1042.05060MR2047763DOI10.1016/j.disc.2003.08.005
  5. Favaron, O., Mahéo, M., Saclé, J.-F., 10.1016/0012-365X(93)90156-N, Discrete Math. 111 (1993), 197-220. (1993) Zbl0785.05065MR1210097DOI10.1016/0012-365X(93)90156-N
  6. Hofmeister, M., 10.1002/mana.19881390105, Math. Nachr. 139 (1988), 37-44. (1988) Zbl0695.05046MR0978106DOI10.1002/mana.19881390105
  7. Hong, Y., Zhang, X.-D., 10.1016/j.disc.2005.04.001, Discrete Math. 296 (2005), 187-197. (2005) Zbl1068.05044MR2154712DOI10.1016/j.disc.2005.04.001
  8. Liu, H., Lu, M., 10.1080/03081080802450021, Linear Multilinear Algebra 58 (2010), 113-119. (2010) Zbl1217.05148MR2641527DOI10.1080/03081080802450021
  9. Liu, H., Lu, M., Tian, F., 10.1007/s10910-006-9183-9, J. Math. Chem. 41 (2007), 45-57. (2007) Zbl1110.92070MR2305216DOI10.1007/s10910-006-9183-9
  10. Nikiforov, V., 10.1016/j.jmaa.2006.03.072, J. Math. Anal. Appl. 326 (2007), 1472-1475. (2007) Zbl1113.15016MR2280998DOI10.1016/j.jmaa.2006.03.072
  11. Shi, L., 10.1016/j.laa.2006.12.003, Linear Algebra Appl. 422 (2007), 755-770. (2007) Zbl1113.05065MR2305155DOI10.1016/j.laa.2006.12.003
  12. Tian, G.-X., Huang, T.-Z., Zhou, B., A note on sum of powers of the Laplacian eigenvalues of bipartite graphs, Linear Algebra Appl. 430 (2009), 2503-2510. (2009) Zbl1165.05020MR2508309
  13. Yu, A., Lu, M., Tian, F., 10.1016/j.laa.2004.01.020, Linear Algebra Appl. 387 (2004), 41-49. (2004) Zbl1041.05051MR2069267DOI10.1016/j.laa.2004.01.020
  14. Yu, A., Lu, M., Tian, F., New upper bounds for the energy of graphs, MATCH Commun. Math. Comput. Chem. 53 (2005), 441-448. (2005) Zbl1081.05067MR2134203
  15. Zhou, B., Energy of a graph, MATCH Commun. Math. Comput. Chem. 51 (2004), 111-118. (2004) Zbl1106.05068MR2063930

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.