Bounds for the (Laplacian) spectral radius of graphs with parameter
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 2, page 567-580
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTian, Gui-Xian, and Huang, Ting-Zhu. "Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $." Czechoslovak Mathematical Journal 62.2 (2012): 567-580. <http://eudml.org/doc/246489>.
@article{Tian2012,
abstract = {Let $G$ be a simple connected graph of order $n$ with degree sequence $(d_1,d_2,\ldots ,d_n)$. Denote $(^\alpha t)_i = \sum \nolimits _\{j\colon i \sim j\} \{d_j^\alpha \}$, $(^\alpha m)_i = \{(^\alpha t)_i \}/\{d_i^\alpha \}$ and $(^\alpha N)_i = \sum \nolimits _\{j\colon i \sim j\} \{(^\alpha t)_j \}$, where $\alpha $ is a real number. Denote by $\lambda _1(G)$ and $\mu _1(G)$ the spectral radius of the adjacency matrix and the Laplacian matrix of $G$, respectively. In this paper, we present some upper and lower bounds of $\lambda _1(G)$ and $\mu _1(G)$ in terms of $(^\alpha t)_i $, $(^\alpha m)_i $ and $(^\alpha N)_i $. Furthermore, we also characterize some extreme graphs which attain these upper bounds. These results theoretically improve and generalize some known results.},
author = {Tian, Gui-Xian, Huang, Ting-Zhu},
journal = {Czechoslovak Mathematical Journal},
keywords = {graph; adjacency matrix; Laplacian matrix; spectral radius; bound; adjacency matrix; Laplacian matrix; spectral radius},
language = {eng},
number = {2},
pages = {567-580},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $},
url = {http://eudml.org/doc/246489},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Tian, Gui-Xian
AU - Huang, Ting-Zhu
TI - Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 567
EP - 580
AB - Let $G$ be a simple connected graph of order $n$ with degree sequence $(d_1,d_2,\ldots ,d_n)$. Denote $(^\alpha t)_i = \sum \nolimits _{j\colon i \sim j} {d_j^\alpha }$, $(^\alpha m)_i = {(^\alpha t)_i }/{d_i^\alpha }$ and $(^\alpha N)_i = \sum \nolimits _{j\colon i \sim j} {(^\alpha t)_j }$, where $\alpha $ is a real number. Denote by $\lambda _1(G)$ and $\mu _1(G)$ the spectral radius of the adjacency matrix and the Laplacian matrix of $G$, respectively. In this paper, we present some upper and lower bounds of $\lambda _1(G)$ and $\mu _1(G)$ in terms of $(^\alpha t)_i $, $(^\alpha m)_i $ and $(^\alpha N)_i $. Furthermore, we also characterize some extreme graphs which attain these upper bounds. These results theoretically improve and generalize some known results.
LA - eng
KW - graph; adjacency matrix; Laplacian matrix; spectral radius; bound; adjacency matrix; Laplacian matrix; spectral radius
UR - http://eudml.org/doc/246489
ER -
References
top- Berman, A., Zhang, X.-D., 10.1006/jctb.2001.2052, J. Combin. Theory, Ser. B 83 (2001), 233-240. (2001) Zbl1023.05098MR1866719DOI10.1006/jctb.2001.2052
- Brankov, V., Hansen, P., Stevanović, D., Automated cunjectures on upper bounds for the largest Laplacian eigenvalue of graphs, Linear Algebra Appl. 414 (2006), 407-424. (2006) MR2213408
- Cvetković, D., Doob, M., Sachs, H., Spectra of Graphs. Theory and Application, Deutscher Verlag der Wissenschaften Berlin (1980). (1980) Zbl0458.05042MR0572262
- Das, K. C., Kumar, P., 10.1016/j.disc.2003.08.005, Discrete Math. 281 (2004), 149-161. (2004) Zbl1042.05060MR2047763DOI10.1016/j.disc.2003.08.005
- Favaron, O., Mahéo, M., Saclé, J.-F., 10.1016/0012-365X(93)90156-N, Discrete Math. 111 (1993), 197-220. (1993) Zbl0785.05065MR1210097DOI10.1016/0012-365X(93)90156-N
- Hofmeister, M., 10.1002/mana.19881390105, Math. Nachr. 139 (1988), 37-44. (1988) Zbl0695.05046MR0978106DOI10.1002/mana.19881390105
- Hong, Y., Zhang, X.-D., 10.1016/j.disc.2005.04.001, Discrete Math. 296 (2005), 187-197. (2005) Zbl1068.05044MR2154712DOI10.1016/j.disc.2005.04.001
- Liu, H., Lu, M., 10.1080/03081080802450021, Linear Multilinear Algebra 58 (2010), 113-119. (2010) Zbl1217.05148MR2641527DOI10.1080/03081080802450021
- Liu, H., Lu, M., Tian, F., 10.1007/s10910-006-9183-9, J. Math. Chem. 41 (2007), 45-57. (2007) Zbl1110.92070MR2305216DOI10.1007/s10910-006-9183-9
- Nikiforov, V., 10.1016/j.jmaa.2006.03.072, J. Math. Anal. Appl. 326 (2007), 1472-1475. (2007) Zbl1113.15016MR2280998DOI10.1016/j.jmaa.2006.03.072
- Shi, L., 10.1016/j.laa.2006.12.003, Linear Algebra Appl. 422 (2007), 755-770. (2007) Zbl1113.05065MR2305155DOI10.1016/j.laa.2006.12.003
- Tian, G.-X., Huang, T.-Z., Zhou, B., A note on sum of powers of the Laplacian eigenvalues of bipartite graphs, Linear Algebra Appl. 430 (2009), 2503-2510. (2009) Zbl1165.05020MR2508309
- Yu, A., Lu, M., Tian, F., 10.1016/j.laa.2004.01.020, Linear Algebra Appl. 387 (2004), 41-49. (2004) Zbl1041.05051MR2069267DOI10.1016/j.laa.2004.01.020
- Yu, A., Lu, M., Tian, F., New upper bounds for the energy of graphs, MATCH Commun. Math. Comput. Chem. 53 (2005), 441-448. (2005) Zbl1081.05067MR2134203
- Zhou, B., Energy of a graph, MATCH Commun. Math. Comput. Chem. 51 (2004), 111-118. (2004) Zbl1106.05068MR2063930
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.