Initial boundary value problem for generalized Zakharov equations
Shujun You; Boling Guo; Xiaoqi Ning
Applications of Mathematics (2012)
- Volume: 57, Issue: 6, page 581-599
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topYou, Shujun, Guo, Boling, and Ning, Xiaoqi. "Initial boundary value problem for generalized Zakharov equations." Applications of Mathematics 57.6 (2012): 581-599. <http://eudml.org/doc/246495>.
@article{You2012,
abstract = {This paper considers the existence and uniqueness of the solution to the initial boundary value problem for a class of generalized Zakharov equations in $(2+1)$ dimensions, and proves the global existence of the solution to the problem by a priori integral estimates and the Galerkin method.},
author = {You, Shujun, Guo, Boling, Ning, Xiaoqi},
journal = {Applications of Mathematics},
keywords = {global solutions; modified Zakharov equations; Galerkin method; modified Zakharov equations; global solution; Galerkin method},
language = {eng},
number = {6},
pages = {581-599},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Initial boundary value problem for generalized Zakharov equations},
url = {http://eudml.org/doc/246495},
volume = {57},
year = {2012},
}
TY - JOUR
AU - You, Shujun
AU - Guo, Boling
AU - Ning, Xiaoqi
TI - Initial boundary value problem for generalized Zakharov equations
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 6
SP - 581
EP - 599
AB - This paper considers the existence and uniqueness of the solution to the initial boundary value problem for a class of generalized Zakharov equations in $(2+1)$ dimensions, and proves the global existence of the solution to the problem by a priori integral estimates and the Galerkin method.
LA - eng
KW - global solutions; modified Zakharov equations; Galerkin method; modified Zakharov equations; global solution; Galerkin method
UR - http://eudml.org/doc/246495
ER -
References
top- Garcia, L. G., Haas, F., Oliveira, L. P. L. de, Goedert, J., 10.1063/1.1819935, Phys. Plasmas 12 (2005). (2005) DOI10.1063/1.1819935
- Guo, B., Zhang, J., Pu, X., 10.1016/j.jmaa.2009.10.045, J. Math. Anal. Appl. 365 (2010), 238-253. (2010) Zbl1185.35275MR2585095DOI10.1016/j.jmaa.2009.10.045
- Holmer, J., Local ill-posedness of the 1D Zakharov system, Electron. J. Differ. Equ. 24 (2007), 1-24. (2007) Zbl1115.35124MR2299578
- Linares, F., Matheus, C., Well-posedness for the 1D Zakharov-Rubenchik system, Adv. Differ. Equ. 14 (2009), 261-288. (2009) Zbl1165.35448MR2493563
- Linares, F., Saut, J.-C., 10.3934/dcds.2009.24.547, Discrete Cont. Dyn. Syst. 24 (2009), 547-565. (2009) Zbl1170.35086MR2486590DOI10.3934/dcds.2009.24.547
- Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod/Gauthier-Villars Paris/Paris (1969), French. (1969) Zbl0189.40603MR0259693
- Masmoudi, N., Nakanishi, K., 10.1142/S0219891605000683, J. Hyperbolic Differ. Equ. 2 (2005), 975-1008. (2005) Zbl1089.35070MR2195989DOI10.1142/S0219891605000683
- Masmoudi, N., Nakanishi, K., 10.1007/s00222-008-0110-5, Invent. Math. 172 (2008), 535-583. (2008) Zbl1143.35090MR2393080DOI10.1007/s00222-008-0110-5
- Pecher, H., 10.1016/j.jmaa.2008.01.035, J. Math. Anal. Appl. 342 (2008), 1440-1454. (2008) Zbl1140.35307MR2445287DOI10.1016/j.jmaa.2008.01.035
- You, S.-J., 10.1016/j.na.2009.01.234, Nonlinear Anal., Theory Methods Appl. 71 (2009), 3571-3584. (2009) Zbl1183.35247MR2532737DOI10.1016/j.na.2009.01.234
- Zakharov, V. E., Collapse of Langmuir waves, Sov. Phys. JETP 35 (1972), 908-914. (1972)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.