The free commutative automorphic 2 -generated loop of nilpotency class 3

Dylene Agda Souza de Barros; Alexander Grishkov; Petr Vojtěchovský

Commentationes Mathematicae Universitatis Carolinae (2012)

  • Volume: 53, Issue: 3, page 321-336
  • ISSN: 0010-2628

Abstract

top
A loop is automorphic if all its inner mappings are automorphisms. We construct the free commutative automorphic 2 -generated loop of nilpotency class 3 . It has dimension 8 over the integers.

How to cite

top

Barros, Dylene Agda Souza de, Grishkov, Alexander, and Vojtěchovský, Petr. "The free commutative automorphic $2$-generated loop of nilpotency class $3$." Commentationes Mathematicae Universitatis Carolinae 53.3 (2012): 321-336. <http://eudml.org/doc/246517>.

@article{Barros2012,
abstract = {A loop is automorphic if all its inner mappings are automorphisms. We construct the free commutative automorphic $2$-generated loop of nilpotency class $3$. It has dimension $8$ over the integers.},
author = {Barros, Dylene Agda Souza de, Grishkov, Alexander, Vojtěchovský, Petr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {free commutative automorphic loop; automorphic loop; associator calculus; free commutative automorphic loops; loops of nilpotency class 3; inner mappings; associators},
language = {eng},
number = {3},
pages = {321-336},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The free commutative automorphic $2$-generated loop of nilpotency class $3$},
url = {http://eudml.org/doc/246517},
volume = {53},
year = {2012},
}

TY - JOUR
AU - Barros, Dylene Agda Souza de
AU - Grishkov, Alexander
AU - Vojtěchovský, Petr
TI - The free commutative automorphic $2$-generated loop of nilpotency class $3$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 3
SP - 321
EP - 336
AB - A loop is automorphic if all its inner mappings are automorphisms. We construct the free commutative automorphic $2$-generated loop of nilpotency class $3$. It has dimension $8$ over the integers.
LA - eng
KW - free commutative automorphic loop; automorphic loop; associator calculus; free commutative automorphic loops; loops of nilpotency class 3; inner mappings; associators
UR - http://eudml.org/doc/246517
ER -

References

top
  1. Barros D., Commutative automorphic loops, PhD dissertation, University of Sao Paulo, in preparation. 
  2. Barros D., Grishkov A., Vojtěchovský P., Commutative automorphic loops of order p 3 , J. Algebra Appl.(to appear). 
  3. Bruck R.H., A Survey of Binary Systems, Springer, 1971. Zbl0141.01401MR0093552
  4. Bruck R.H., Paige L.J., 10.2307/1969612, Ann. of Math. (2) 63 (1956), 308–323. Zbl0074.01701MR0076779DOI10.2307/1969612
  5. Csörgö P., 10.1016/j.jalgebra.2011.09.038, J. Algebra 350 (2012), no. 1, 77–83. MR2859876DOI10.1016/j.jalgebra.2011.09.038
  6. Jedlička P., Kinyon M., Vojtěchovský P., 10.1090/S0002-9947-2010-05088-3, Trans. Amer. Math. Soc. 363 (2011), no. 1, 365–384. Zbl1215.20060MR2719686DOI10.1090/S0002-9947-2010-05088-3
  7. Jedlička P., Kinyon M., Vojtěchovský P., 10.1080/00927870903200877, Comm. Algebra 38 (2010), no. 9, 3243–3267. Zbl1209.20069MR2724218DOI10.1080/00927870903200877
  8. Jedlička P., Kinyon M., Vojtěchovský P., 10.1016/j.jalgebra.2011.09.034, J. Algebra 350 (2012), no. 1, 64–76. MR2859875DOI10.1016/j.jalgebra.2011.09.034
  9. Johnson K.W., Kinyon M.K., Nagy G.P., Vojtěchovský P., 10.1112/S1461157010000173, LMS J. Comput. Math. 14 (2011), 200–213. Zbl1225.20052MR2831230DOI10.1112/S1461157010000173
  10. Grishkov A.N., Shestakov I.P., 10.1016/j.jalgebra.2010.11.020, J. Algebra 333 (2011), 1–13. Zbl1243.20076MR2785933DOI10.1016/j.jalgebra.2010.11.020
  11. Kinyon M.K., Kunen K., Phillips J.D., Vojtěchovský P., The structure of automorphic loops, in preparation. 
  12. Wolfram Research, Inc., Mathematica, version 8.0, Wolfram Research, Inc., Champaign, Illinois, 2010. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.