The free commutative automorphic -generated loop of nilpotency class
Dylene Agda Souza de Barros; Alexander Grishkov; Petr Vojtěchovský
Commentationes Mathematicae Universitatis Carolinae (2012)
- Volume: 53, Issue: 3, page 321-336
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBarros, Dylene Agda Souza de, Grishkov, Alexander, and Vojtěchovský, Petr. "The free commutative automorphic $2$-generated loop of nilpotency class $3$." Commentationes Mathematicae Universitatis Carolinae 53.3 (2012): 321-336. <http://eudml.org/doc/246517>.
@article{Barros2012,
abstract = {A loop is automorphic if all its inner mappings are automorphisms. We construct the free commutative automorphic $2$-generated loop of nilpotency class $3$. It has dimension $8$ over the integers.},
author = {Barros, Dylene Agda Souza de, Grishkov, Alexander, Vojtěchovský, Petr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {free commutative automorphic loop; automorphic loop; associator calculus; free commutative automorphic loops; loops of nilpotency class 3; inner mappings; associators},
language = {eng},
number = {3},
pages = {321-336},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The free commutative automorphic $2$-generated loop of nilpotency class $3$},
url = {http://eudml.org/doc/246517},
volume = {53},
year = {2012},
}
TY - JOUR
AU - Barros, Dylene Agda Souza de
AU - Grishkov, Alexander
AU - Vojtěchovský, Petr
TI - The free commutative automorphic $2$-generated loop of nilpotency class $3$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 3
SP - 321
EP - 336
AB - A loop is automorphic if all its inner mappings are automorphisms. We construct the free commutative automorphic $2$-generated loop of nilpotency class $3$. It has dimension $8$ over the integers.
LA - eng
KW - free commutative automorphic loop; automorphic loop; associator calculus; free commutative automorphic loops; loops of nilpotency class 3; inner mappings; associators
UR - http://eudml.org/doc/246517
ER -
References
top- Barros D., Commutative automorphic loops, PhD dissertation, University of Sao Paulo, in preparation.
- Barros D., Grishkov A., Vojtěchovský P., Commutative automorphic loops of order , J. Algebra Appl.(to appear).
- Bruck R.H., A Survey of Binary Systems, Springer, 1971. Zbl0141.01401MR0093552
- Bruck R.H., Paige L.J., 10.2307/1969612, Ann. of Math. (2) 63 (1956), 308–323. Zbl0074.01701MR0076779DOI10.2307/1969612
- Csörgö P., 10.1016/j.jalgebra.2011.09.038, J. Algebra 350 (2012), no. 1, 77–83. MR2859876DOI10.1016/j.jalgebra.2011.09.038
- Jedlička P., Kinyon M., Vojtěchovský P., 10.1090/S0002-9947-2010-05088-3, Trans. Amer. Math. Soc. 363 (2011), no. 1, 365–384. Zbl1215.20060MR2719686DOI10.1090/S0002-9947-2010-05088-3
- Jedlička P., Kinyon M., Vojtěchovský P., 10.1080/00927870903200877, Comm. Algebra 38 (2010), no. 9, 3243–3267. Zbl1209.20069MR2724218DOI10.1080/00927870903200877
- Jedlička P., Kinyon M., Vojtěchovský P., 10.1016/j.jalgebra.2011.09.034, J. Algebra 350 (2012), no. 1, 64–76. MR2859875DOI10.1016/j.jalgebra.2011.09.034
- Johnson K.W., Kinyon M.K., Nagy G.P., Vojtěchovský P., 10.1112/S1461157010000173, LMS J. Comput. Math. 14 (2011), 200–213. Zbl1225.20052MR2831230DOI10.1112/S1461157010000173
- Grishkov A.N., Shestakov I.P., 10.1016/j.jalgebra.2010.11.020, J. Algebra 333 (2011), 1–13. Zbl1243.20076MR2785933DOI10.1016/j.jalgebra.2010.11.020
- Kinyon M.K., Kunen K., Phillips J.D., Vojtěchovský P., The structure of automorphic loops, in preparation.
- Wolfram Research, Inc., Mathematica, version 8.0, Wolfram Research, Inc., Champaign, Illinois, 2010.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.