Convergence Results for Jungck-type Iterative Processes in Convex Metric Spaces
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2012)
- Volume: 51, Issue: 1, page 79-87
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topOlatinwo, Memudu Olaposi. "Convergence Results for Jungck-type Iterative Processes in Convex Metric Spaces." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 51.1 (2012): 79-87. <http://eudml.org/doc/246525>.
@article{Olatinwo2012,
abstract = {In this paper, the convergence results of [V. Berinde; A convergence theorem for Mann iteration in the class of Zamfirescu operators, Analele Universitatii de Vest, Timisoara, Seria Matematica-Informatica 45 (1) (2007), 33–41], [V. Berinde; On the convergence of Mann iteration for a class of quasi-contractive operators, Preprint, North University of Baia Mare (2003)] and [V. Berinde; On the Convergence of the Ishikawa Iteration in the Class of Quasi-contractive Operators, Acta Math. Univ. Comenianae 73 (1) (2004), 119–126] are extended from arbitrary Banach space setting to the convex metric space by weakening further the conditions on the parameter sequence $\lbrace \alpha _n\rbrace \subset [0,1]$. We establish the convergence of Jungck–Mann and Jungck–Ishikawa iterative processes for two nonselfmappings in a convex metric space setting by employing a general contractive condition. Similar results are also deduced for the Mann and Ishikawa iterations. Our results generalize, extend and improve a multitude of results in the literature including those of Berinde mentioned above.},
author = {Olatinwo, Memudu Olaposi},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {arbitrary Banach space setting; Jungck–Mann and Jungck–Ishikawa iterative processes; convex metric space; arbitrary Banach space setting; Jungck-Mann and Jungck-Ishikawa iterative processes; convex metric space},
language = {eng},
number = {1},
pages = {79-87},
publisher = {Palacký University Olomouc},
title = {Convergence Results for Jungck-type Iterative Processes in Convex Metric Spaces},
url = {http://eudml.org/doc/246525},
volume = {51},
year = {2012},
}
TY - JOUR
AU - Olatinwo, Memudu Olaposi
TI - Convergence Results for Jungck-type Iterative Processes in Convex Metric Spaces
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2012
PB - Palacký University Olomouc
VL - 51
IS - 1
SP - 79
EP - 87
AB - In this paper, the convergence results of [V. Berinde; A convergence theorem for Mann iteration in the class of Zamfirescu operators, Analele Universitatii de Vest, Timisoara, Seria Matematica-Informatica 45 (1) (2007), 33–41], [V. Berinde; On the convergence of Mann iteration for a class of quasi-contractive operators, Preprint, North University of Baia Mare (2003)] and [V. Berinde; On the Convergence of the Ishikawa Iteration in the Class of Quasi-contractive Operators, Acta Math. Univ. Comenianae 73 (1) (2004), 119–126] are extended from arbitrary Banach space setting to the convex metric space by weakening further the conditions on the parameter sequence $\lbrace \alpha _n\rbrace \subset [0,1]$. We establish the convergence of Jungck–Mann and Jungck–Ishikawa iterative processes for two nonselfmappings in a convex metric space setting by employing a general contractive condition. Similar results are also deduced for the Mann and Ishikawa iterations. Our results generalize, extend and improve a multitude of results in the literature including those of Berinde mentioned above.
LA - eng
KW - arbitrary Banach space setting; Jungck–Mann and Jungck–Ishikawa iterative processes; convex metric space; arbitrary Banach space setting; Jungck-Mann and Jungck-Ishikawa iterative processes; convex metric space
UR - http://eudml.org/doc/246525
ER -
References
top- Agarwal, R. P., O’Regan, D., Sahu, D. R., Fixed Point Theory for Lipschitzian-type Mappings with Applications, Topological Fixed Point Theory and Its Applications, Vol. 6 6 Springer Science & Bussiness Media, 2009. (2009) Zbl1176.47037MR2508013
- Banach, S., Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math. 3 (1922), 133–181. (1922)
- Beg, I., Structure of the set of fixed points of nonexpansive mappings on convex metric spaces, Ann. Univ. Marie Curie-Sklodowska Sec. 52, Sec. A (1998), 7–14. (1998) Zbl1004.54031MR1728052
- Beg, I., Inequalities in metric spaces with applications, Topological Methods in Nonlinear Analysis 17 (2001), 183–190. (2001) Zbl0998.47040MR1846986
- Berinde, V., On the convergence of Mann iteration for a class of quasi-contractive operators, North University of Baia Mare, Preprint, 2003. (2003)
- Berinde, V., On the convergence of the Ishikawa iteration in the class of quasi-contractive operators, Acta Math. Univ. Comenianae 73, 1 (2004), 119–126. (2004) Zbl1100.47054MR2076050
- Berinde, V., Iterative Approximation of Fixed Points, Springer-Verlag, Berlin–Heidelberg, 2007. (2007) Zbl1165.47047MR2323613
- Berinde, V., A convergence theorem for Mann iteration in the class of Zamfirescu operators, Analele Universitatii de Vest, Timisoara, Seria Matematica-Informatica 45, 1 (2007), 33–41. (2007) Zbl1164.47065MR2371084
- Berinde, V., Some remarks on a fixed point theorem for Ciric-type almost contractions, Carpathian J. Math. 25, 2 (2009), 157–162. (2009) Zbl1249.54078MR2731191
- Chatterjea, S. K., Fixed-point theorems, C. R. Acad. Bulgare Sci. 10 (1972), 727–730. (1972) Zbl0274.54033MR0324493
- Ciric, Lj. B., Generalized contractions and fixed point theorems, Publ. Inst. Math. (Beograd) 12, 26 (1971), 19–26. (1971) Zbl0234.54029MR0309092
- Ciric, Lj. B., 10.2307/2040075, Proc. Amer. Math. Soc. 45 (1974), 267–273. (1974) Zbl0291.54056MR0356011DOI10.2307/2040075
- Ciric, L., On some discontinuous fixed point theorems on convex metric spaces, Czechoslovak Math. J. 43 (1993), 319–326. (1993) MR1211753
- Guay, M. D., Singh, K. L., Whitfield, J. H. M., Fxed point theorems for nonexpansive mappings in convex metric spaces, In: Singh, S. P., Barry, J. H. (eds.) Proceedings of Conference on Nonlinear Analysis 80, Marcel Dekker Inc., New York, 1982, 179–189. (1982) MR0689554
- Ishikawa, S., 10.1090/S0002-9939-1974-0336469-5, Proc. Amer. Math. Soc. 44, 1 (1974), 147–150. (1974) MR0336469DOI10.1090/S0002-9939-1974-0336469-5
- Jungck, G., 10.2307/2318216, Amer. Math. Monthly 83, 4 (1976), 261–263. (1976) Zbl0321.54025MR0400196DOI10.2307/2318216
- Kannan, R., Some results on fixed points, Bull. Calcutta Math. Soc. 10 (1968), 71–76. (1968) Zbl0209.27104MR0257837
- Kannan, R., Some results on fixed points III, Fund. Math. 70, 2 (1971), 169–177. (1971) Zbl0246.47065MR0283649
- Kannan, R., 10.1016/0022-247X(73)90218-7, J. Math. Anal. Appl. 41 (1973), 430–438. (1973) Zbl0261.47037MR0320837DOI10.1016/0022-247X(73)90218-7
- Mann, W. R., 10.1090/S0002-9939-1953-0054846-3, Proc. Amer. Math. Soc. 44 (1953), 506–510. (1953) Zbl0050.11603MR0054846DOI10.1090/S0002-9939-1953-0054846-3
- Olatinwo, M. O., Some stability and strong convergence results for the Jungck-Ishikawa iteration process, Creative Math. Inf. 17 (2008), 33–42. (2008) Zbl1199.47282MR2409230
- Popescu, O., Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators, Mathematical Communications 12 (2007), 195–202. (2007) Zbl1153.47055MR2382455
- Rhoades, B. E., 10.1090/S0002-9947-1974-0348565-1, Trans. Amer. Math. Soc. 196 (1974), 161–176. (1974) Zbl0267.47032MR0348565DOI10.1090/S0002-9947-1974-0348565-1
- Rhoades, B. E., 10.1016/0022-247X(76)90038-X, J. Math. Anal. Appl. 56, 2 (1976), 741–750. (1976) Zbl0353.47029MR0430880DOI10.1016/0022-247X(76)90038-X
- Rus, I. A., Generalized Contractions and Applications, Cluj Univ. Press, Cluj Napoca, 2001. (2001) Zbl0968.54029MR1947742
- Rus, I. A., Petrusel, A., Petrusel, G., Fixed Point Theory, 1950–2000, Romanian Contributions, House of the Book of Science, Cluj Napoca, 2002. (2002) Zbl1005.54037MR1947195
- Shimizu, T., Takahashi, W., Fixed point theorems in certain convex metric spaces, Math. Japon. 37 (1992), 855–859. (1992) Zbl0764.47030MR1186552
- Singh, S. L., Bhatnagar, C., Mishra, S. N., 10.1155/IJMMS.2005.3035, Internat. J. Math. & Math. Sc. 19 (2005), 3035–3043. (2005) Zbl1117.26005MR2206082DOI10.1155/IJMMS.2005.3035
- Takahashi, W., 10.2996/kmj/1138846111, Kodai Math. Sem. Rep. 22 (1970), 142–149. (1970) MR0267565DOI10.2996/kmj/1138846111
- Zamfirescu, T., 10.1007/BF01304884, Arch. Math. 23 (1972), 292–298. (1972) Zbl0239.54030MR0310859DOI10.1007/BF01304884
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.