On Equational Theory of Left Divisible Left Distributive Groupoids
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2012)
- Volume: 51, Issue: 2, page 67-72
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topJedlička, Přemysl. "On Equational Theory of Left Divisible Left Distributive Groupoids." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 51.2 (2012): 67-72. <http://eudml.org/doc/246534>.
@article{Jedlička2012,
abstract = {It is an open question whether the variety generated by the left divisible left distributive groupoids coincides with the variety generated by the left distributive left quasigroups. In this paper we prove that every left divisible left distributive groupoid with the mapping $a\mapsto a^2$ surjective lies in the variety generated by the left distributive left quasigroups.},
author = {Jedlička, Přemysl},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {left distributivity; left idempotency; variety; left distributivity; left idempotency; varieties of left divisible left distributive groupoids; varieties of left distributive left quasigroups},
language = {eng},
number = {2},
pages = {67-72},
publisher = {Palacký University Olomouc},
title = {On Equational Theory of Left Divisible Left Distributive Groupoids},
url = {http://eudml.org/doc/246534},
volume = {51},
year = {2012},
}
TY - JOUR
AU - Jedlička, Přemysl
TI - On Equational Theory of Left Divisible Left Distributive Groupoids
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2012
PB - Palacký University Olomouc
VL - 51
IS - 2
SP - 67
EP - 72
AB - It is an open question whether the variety generated by the left divisible left distributive groupoids coincides with the variety generated by the left distributive left quasigroups. In this paper we prove that every left divisible left distributive groupoid with the mapping $a\mapsto a^2$ surjective lies in the variety generated by the left distributive left quasigroups.
LA - eng
KW - left distributivity; left idempotency; variety; left distributivity; left idempotency; varieties of left divisible left distributive groupoids; varieties of left distributive left quasigroups
UR - http://eudml.org/doc/246534
ER -
References
top- Barboriková, J., Systémy automatického dokazování (Systems of automated reasoning), bachelor thesis, Charles University, Praha, 2009, (in Czech). (2009)
- Dehornoy, P., Braids and Self-Distributivity, Progress in Mathematics 192, Birkhäuser, Basel, 2000. (2000) Zbl0958.20033MR1778150
- Drápal, A., Kepka, T., Musílek, M., Group Conjugation has Non-Trivial LD-Identities, Comment. Math. Univ. Carol. 35 (1994), 219–222. (1994) Zbl0810.20053MR1286567
- Jedlička, P., On left distributive left idempotent groupoids, Comm. Math. Univ. Carol. 46, 1 (2005), 15–20. (2005) Zbl1106.20049MR2175855
- Joyce, D., 10.1016/0022-4049(82)90077-9, J. Pure App. Alg. 23 (1982), 37–56. (1982) Zbl0474.57003MR0638121DOI10.1016/0022-4049(82)90077-9
- Kepka, T., Notes On Left Distributive Groupoids, Acta Univ. Carolinae – Math. et Phys. 22, 2 (1981), 23–37. (1981) Zbl0517.20048MR0654379
- Larue, D., 10.1080/00927879908826547, Commun. Alg. 27, 5 (1999), 2003–2029. (1999) Zbl0940.20070MR1683848DOI10.1080/00927879908826547
- Stanovský, D., On the equational theory of group conjugation, In: Contributions to General Algebra 15, Heyn, Klagenfurt, 2004, 177–185. (2004) Zbl1076.20062MR2082381
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.