On weakly φ -symmetric Kenmotsu Manifolds

Shyamal Kumar Hui

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2012)

  • Volume: 51, Issue: 1, page 43-50
  • ISSN: 0231-9721

Abstract

top
The object of the present paper is to study weakly φ -symmetric and weakly φ -Ricci symmetric Kenmotsu manifolds. It is shown that weakly φ -symmetric and weakly φ -Ricci symmetric Kenmotsu manifolds are η -Einstein.

How to cite

top

Hui, Shyamal Kumar. "On weakly $\phi $-symmetric Kenmotsu Manifolds." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 51.1 (2012): 43-50. <http://eudml.org/doc/246559>.

@article{Hui2012,
abstract = {The object of the present paper is to study weakly $\phi $-symmetric and weakly $\phi $-Ricci symmetric Kenmotsu manifolds. It is shown that weakly $\phi $-symmetric and weakly $\phi $-Ricci symmetric Kenmotsu manifolds are $\eta $-Einstein.},
author = {Hui, Shyamal Kumar},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {weakly $\phi $-symmetric; weakly $\phi $-Ricci symmetric; Kenmotsu manifold; Einstein manifold; $\eta $-Einstein manifold; weakly -symmetric; weakly -Ricci symmetric; Kenmotsu manifold; Einstein manifold; -Einstein manifold},
language = {eng},
number = {1},
pages = {43-50},
publisher = {Palacký University Olomouc},
title = {On weakly $\phi $-symmetric Kenmotsu Manifolds},
url = {http://eudml.org/doc/246559},
volume = {51},
year = {2012},
}

TY - JOUR
AU - Hui, Shyamal Kumar
TI - On weakly $\phi $-symmetric Kenmotsu Manifolds
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2012
PB - Palacký University Olomouc
VL - 51
IS - 1
SP - 43
EP - 50
AB - The object of the present paper is to study weakly $\phi $-symmetric and weakly $\phi $-Ricci symmetric Kenmotsu manifolds. It is shown that weakly $\phi $-symmetric and weakly $\phi $-Ricci symmetric Kenmotsu manifolds are $\eta $-Einstein.
LA - eng
KW - weakly $\phi $-symmetric; weakly $\phi $-Ricci symmetric; Kenmotsu manifold; Einstein manifold; $\eta $-Einstein manifold; weakly -symmetric; weakly -Ricci symmetric; Kenmotsu manifold; Einstein manifold; -Einstein manifold
UR - http://eudml.org/doc/246559
ER -

References

top
  1. Blair, D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics 509, Springer, Berlin, 1976. (1976) Zbl0319.53026MR0467588
  2. Cartan, E., Sur une classe remarquable d’espaces de Riemannian, Bull. Soc. Math. France 54 (1926), 214–264. (1926) MR1504900
  3. Chaki, M. C., On pseudo-symmetric manifolds, An. Sti. Ale Univ., “AL. I. CUZA" Din Iasi 33 (1987), 53–58. (1987) Zbl0634.53012MR0925690
  4. Chaki, M. C., On generalized pseudo-symmetric manifolds, Publ. Math. Debrecen 45 (1994), 305–312. (1994) 
  5. De, U. C., On φ -symmetric Kenmotsu manifolds, Int. Electronic J. Geom. 1, 1 (2008), 33–38. (2008) Zbl1138.53029MR2390388
  6. De, U. C., Bandyopadhyay, S., On weakly symmetric Riemannian spaces, Publ. Math. Debrecen 54 (1999), 377–381. (1999) Zbl0922.53018MR1694492
  7. Deszcz R., On pseudosymmetric spaces, Bull. Soc. Math. Belg. Ser. A 44, 1 (1992), 1–34. (1992) Zbl0808.53012MR1315367
  8. Hui, S. K., Matsuyama, Y., Shaikh, A. A., On decomposable weakly conformally symmetric manifolds, Acta Math. Hungar. 128, 1-2 (2010), 82–95. (2010) Zbl1224.53057MR2665800
  9. Kenmotsu, K., 10.2748/tmj/1178241594, Tohoku Math. J. 24 (1972), 93–103. (1972) Zbl0245.53040MR0319102DOI10.2748/tmj/1178241594
  10. Mikeš, J., Projective-symmetric and projective-recurrent affinely connected spaces, Tr. Geom. Semin. 13 (1981), 61–62 (in Russian). (1981) 
  11. Mikeš, J., Geodesic mappings of special Riemannian spaces, In: Topics in differential geometry, Pap. Colloq., Hajduszoboszló, Hung., 1984, Vol. 2 Colloq. Math. Soc. János Bolyai 46 (1988), 793–813. (1988) MR0933875
  12. Mikeš, J., 10.1007/BF02365193, J. Math. Sci. 78, 3 (1996), 311–333. (1996) MR1384327DOI10.1007/BF02365193
  13. Mikeš, J., Tolobaev, O. S., Symmetric and projectively symmetric affinely connected spaces, Studies on topological and generalized spaces, Collect. Sci. Works, Frunze (1988), 58–63 (in Russian). (1988) MR1165335
  14. Oubiña, J. A., New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), 187–193. (1985) Zbl0611.53032MR0834769
  15. Özgür, C., On weakly symmetric Kenmotsu manifolds, Diff. Geom.-Dynamical Systems 8 (2006), 204–209. (2006) Zbl1156.53309MR2220726
  16. Prvanović, M., On weakly symmetric Riemmanian manifolds, Publ. Math. Debrecen 46 (1995), 19–25. (1995) 
  17. Roter, W., On conformally symmetric Ricci recurrent space, Colloq. Math. 31 (1974), 87–96. (1974) MR0372768
  18. Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47–87. (1956) Zbl0072.08201MR0088511
  19. Shaikh, A. A., Hui, S. K., On weakly conharmonically symmetric manifolds, Tensor, N. S. 70 (2008), 119–134. (2008) Zbl1193.53115MR2546909
  20. Shaikh, A. A., Hui, S. K., 10.1134/S1995080208040021, Lobachevski J. Math. 29, 4 (2008), 206–215. (2008) Zbl1167.53305MR2461622DOI10.1134/S1995080208040021
  21. Shaikh, A. A., Hui, S. K., On weakly concircular symmetric manifolds, Ann. Sti. Ale Univ., “Al. I. CUZA", Din Iasi 55, 1 (2009), 167–186. (2009) Zbl1199.53057MR2510720
  22. Shaikh, A. A., Hui, S. K., On weakly projective symmetric manifolds, Acta Math. Academiae Paedagogicae Nyiregyhaziensis 25, 2 (2009), 247–269. (2009) Zbl1224.53039MR2570946
  23. Shaikh, A. A., Hui, S. K., On weak symmetries of trans-Sasakian manifolds, Proc. Estonian Acad. Sci. 58, 4 (2009), 213–223. (2009) Zbl1185.53032MR2604249
  24. Shaikh, A. A., Jana, S. K., On weakly symmetric Riemannian manifolds, Publ. Math. Debrecen. 71 (2007), 27–41. (2007) Zbl1136.53019MR2340032
  25. Shaikh, A. A., Jana, S. K., On weakly quasi-conformally symmetric manifolds, SUT. J. Math. 43, 1 (2007), 61–83. (2007) Zbl1139.53008MR2417157
  26. Shukla, S. S., Shukla, M. K., On φ -Ricci symmetric Kenmotsu manifolds, Novi Sad J. Math. 39, 2 (2009), 89–95. (2009) Zbl1224.53063MR2656183
  27. Sinyukov, N. S., Geodesic mappings of Riemannian spaces, Nauka, Moscow, 1979, (in Russian). (1979) Zbl0637.53020MR0552022
  28. Szabó, Z. I., Structure theorems on Riemannian spaces satisfying R ( X , Y ) · R = 0 , The local version, J. Diff. Geom. 17 (1982), 531–582. (1982) MR0683165
  29. Tanno, S., 10.2748/tmj/1178243031, Tohoku Math. J. 21 (1969), 21–38. (1969) Zbl1168.51302MR0242094DOI10.2748/tmj/1178243031
  30. Takahashi, T., 10.2748/tmj/1178240699, Tohoku Math. J. 29 (1977), 91–113. (1977) MR0440472DOI10.2748/tmj/1178240699
  31. Tamássy, L., Binh, T. Q., On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc. J. Bolyai 56 (1989), 663–670. (1989) MR1211691
  32. Tamássy, L., Binh, T. Q., On weak symmetrics of Einstein and Sasakian manifolds, Tensor, N. S. 53 (1993), 140–148. (1993) MR1455411
  33. Walker, A. G., On Ruses spaces of recurrent curvature, Proc. London Math. Soc. 52 (1950), 36–64. (1950) MR0037574

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.