More on -Ohio completeness
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 4, page 551-559
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBasile, D.. "More on $\kappa $-Ohio completeness." Commentationes Mathematicae Universitatis Carolinae 52.4 (2011): 551-559. <http://eudml.org/doc/246569>.
@article{Basile2011,
abstract = {We study closed subspaces of $\kappa $-Ohio complete spaces and, for $\kappa $ uncountable cardinal, we prove a characterization for them. We then investigate the behaviour of products of $\kappa $-Ohio complete spaces. We prove that, if the cardinal $\kappa ^+$ is endowed with either the order or the discrete topology, the space $(\kappa ^+)^\{\kappa ^+\}$ is not $\kappa $-Ohio complete. As a consequence, we show that, if $\kappa $ is less than the first weakly inaccessible cardinal, then neither the space $\omega ^\{\kappa ^+\}$, nor the space $\mathbb \{R\}^\{\kappa ^+\}$ is $\kappa $-Ohio complete.},
author = {Basile, D.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\kappa $-Ohio complete; compactification; subspace; product; -Ohio complete space; closed hereditary property; product space; compactification},
language = {eng},
number = {4},
pages = {551-559},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {More on $\kappa $-Ohio completeness},
url = {http://eudml.org/doc/246569},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Basile, D.
TI - More on $\kappa $-Ohio completeness
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 4
SP - 551
EP - 559
AB - We study closed subspaces of $\kappa $-Ohio complete spaces and, for $\kappa $ uncountable cardinal, we prove a characterization for them. We then investigate the behaviour of products of $\kappa $-Ohio complete spaces. We prove that, if the cardinal $\kappa ^+$ is endowed with either the order or the discrete topology, the space $(\kappa ^+)^{\kappa ^+}$ is not $\kappa $-Ohio complete. As a consequence, we show that, if $\kappa $ is less than the first weakly inaccessible cardinal, then neither the space $\omega ^{\kappa ^+}$, nor the space $\mathbb {R}^{\kappa ^+}$ is $\kappa $-Ohio complete.
LA - eng
KW - $\kappa $-Ohio complete; compactification; subspace; product; -Ohio complete space; closed hereditary property; product space; compactification
UR - http://eudml.org/doc/246569
ER -
References
top- Arhangel'skii A.V., 10.1016/j.topol.2004.10.015, Topology Appl. 150 (2005), 79–90. Zbl1075.54012MR2133669DOI10.1016/j.topol.2004.10.015
- Basile D., -Ohio completenss and related problems, Doctoral Thesis, Vrije Universiteit, Amsterdam, 2009.
- Basile D., van Mill J., 10.1016/j.topol.2007.09.005, Topology Appl. 155 (2008), no. 4, 180–189. Zbl1147.54012MR2380256DOI10.1016/j.topol.2007.09.005
- Basile D., van Mill J., Ridderbos G.J., 10.4064/cm113-1-6, Colloq. Math. 113 (2008), 91–104. Zbl1149.54014MR2399666DOI10.4064/cm113-1-6
- Basile D., van Mill J., Ridderbos G.J., 10.2969/jmsj/06141293, J. Math. Soc. Japan 61 (2009), no. 4, 1293–1301. Zbl1186.54024MR2588512DOI10.2969/jmsj/06141293
- Engelking R., General Topology, second ed., Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
- Glicksberg I., Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369–382. Zbl0089.38702MR0105667
- Mycielski J., -incompactness of , Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 437–438. MR0211871
- Okunev O., Tamariz-Mascarúa A., 10.1016/S0166-8641(03)00213-X, Topology Appl. 137 (2004), no. 1–3, 237–249; IV Iberoamerican Conference on Topology and its Applications. Zbl1048.54010MR2057890DOI10.1016/S0166-8641(03)00213-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.