Impulsive boundary value problems for p ( t ) -Laplacian’s via critical point theory

Marek Galewski; Donal O'Regan

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 4, page 951-967
  • ISSN: 0011-4642

Abstract

top
In this paper we investigate the existence of solutions to impulsive problems with a p ( t ) -Laplacian and Dirichlet boundary value conditions. We introduce two types of solutions, namely a weak and a classical one which coincide because of the fundamental lemma of the calculus of variations. Firstly we investigate the existence of solution to the linear problem, i.e. a problem with a fixed rigth hand side. Then we use a direct variational method and next a mountain pass approach in order to get the existence of at least one weak solution to the nonlinear problem.

How to cite

top

Galewski, Marek, and O'Regan, Donal. "Impulsive boundary value problems for $p(t)$-Laplacian’s via critical point theory." Czechoslovak Mathematical Journal 62.4 (2012): 951-967. <http://eudml.org/doc/246575>.

@article{Galewski2012,
abstract = {In this paper we investigate the existence of solutions to impulsive problems with a $p(t)$-Laplacian and Dirichlet boundary value conditions. We introduce two types of solutions, namely a weak and a classical one which coincide because of the fundamental lemma of the calculus of variations. Firstly we investigate the existence of solution to the linear problem, i.e. a problem with a fixed rigth hand side. Then we use a direct variational method and next a mountain pass approach in order to get the existence of at least one weak solution to the nonlinear problem.},
author = {Galewski, Marek, O'Regan, Donal},
journal = {Czechoslovak Mathematical Journal},
keywords = {$p( t)$-Laplacian; impulsive condition; critical point; variational method; Dirichlet problem; -Laplacian; impulsive condition; critical point; variational method; Dirichlet problem},
language = {eng},
number = {4},
pages = {951-967},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Impulsive boundary value problems for $p(t)$-Laplacian’s via critical point theory},
url = {http://eudml.org/doc/246575},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Galewski, Marek
AU - O'Regan, Donal
TI - Impulsive boundary value problems for $p(t)$-Laplacian’s via critical point theory
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 951
EP - 967
AB - In this paper we investigate the existence of solutions to impulsive problems with a $p(t)$-Laplacian and Dirichlet boundary value conditions. We introduce two types of solutions, namely a weak and a classical one which coincide because of the fundamental lemma of the calculus of variations. Firstly we investigate the existence of solution to the linear problem, i.e. a problem with a fixed rigth hand side. Then we use a direct variational method and next a mountain pass approach in order to get the existence of at least one weak solution to the nonlinear problem.
LA - eng
KW - $p( t)$-Laplacian; impulsive condition; critical point; variational method; Dirichlet problem; -Laplacian; impulsive condition; critical point; variational method; Dirichlet problem
UR - http://eudml.org/doc/246575
ER -

References

top
  1. Benchohra, M., Henderson, J., Ntouyas, S., Impulsive Differential Equations and Inclusions, Contemporary Mathematics and Its Applications, 2. Hindawi Publishing Corporation, New York (2006). (2006) Zbl1130.34003MR2322133
  2. Chen, Y., Levine, S., Rao, M., 10.1137/050624522, SIAM J. Appl. Math. 66 (2006), 1383-1406. (2006) Zbl1102.49010MR2246061DOI10.1137/050624522
  3. Fan, X. L., Zhang, Q. H., 10.1016/S0362-546X(02)00150-5, Nonlinear Anal., Theory Methods Appl. 52 (2003), 1843-1852. (2003) Zbl1146.35353MR1954585DOI10.1016/S0362-546X(02)00150-5
  4. Fan, X. L., Zhao, D., 10.1006/jmaa.2000.7617, J. Math. Anal. Appl. 263 (2001), 424-446. (2001) MR1866056DOI10.1006/jmaa.2000.7617
  5. Feng, M., Xie, D., 10.1016/j.cam.2008.01.024, J. Comput. Appl. Math. 223 (2009), 438-448. (2009) Zbl1159.34022MR2463127DOI10.1016/j.cam.2008.01.024
  6. Ge, W., Tian, Y., 10.1017/S0013091506001532, Proc. Edinb. Math. Soc., II. Ser. 51 (2008), 509-527. (2008) Zbl1163.34015MR2465922DOI10.1017/S0013091506001532
  7. Harjulehto, P., Hästö, P., Le, U. V., Nuortio, M., 10.1016/j.na.2010.02.033, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4551-4574. (2010) Zbl1188.35072MR2639204DOI10.1016/j.na.2010.02.033
  8. Jankowski, T., 10.1016/j.amc.2008.02.040, Appl. Math. Comput. 202 (2008), 550-561. (2008) MR2435690DOI10.1016/j.amc.2008.02.040
  9. Mawhin, J., Problemes de Dirichlet Variationnels non Linéaires, French Les Presses de l'Université de Montréal, Montreal (1987). (1987) Zbl0644.49001MR0906453
  10. Nieto, J. J., O'Regan, D., Variational approach to impulsive differential equations, Nonlinear Anal., Real World Appl. 10 (2009), 680-690. (2009) Zbl1167.34318MR2474254
  11. Růžička, M., 10.1007/BFb0104030, Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000. Zbl0968.76531MR1810360DOI10.1007/BFb0104030
  12. Teng, K., Zhang, Ch., Existence of solution to boundary value problem for impulsive differential equations, Nonlinear Anal., Real World Appl. 11 (2010), 4431-4441. (2010) Zbl1207.34034MR2683887
  13. Troutman, J. L., Variational Calculus with Elementary Convexity. With the assistence of W. Hrusa, Undergraduate Texts in Mathematics. Springer, New York (1983). (1983) Zbl0523.49001MR0697723
  14. Zhang, H., Li, Z., Variational approach to impulsive differential equations with periodic boundary conditions, Nonlinear Anal., Real World Appl. 11 (2010), 67-78. (2010) Zbl1186.34089MR2570525
  15. Zhang, Z., Yuan, R., An application of variational methods to Dirichlet boundary value problem with impulses, Nonlinear Anal., Real World Appl. 11 (2010), 155-162. (2010) Zbl1191.34039MR2570535
  16. Zhikov, V. V., 10.1070/IM1987v029n01ABEH000958, Math. USSR, Izv. 29 (1987), 33-66; translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50 675-710 (1986). (1986) Zbl0599.49031MR0864171DOI10.1070/IM1987v029n01ABEH000958

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.