Impulsive boundary value problems for -Laplacian’s via critical point theory
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 4, page 951-967
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGalewski, Marek, and O'Regan, Donal. "Impulsive boundary value problems for $p(t)$-Laplacian’s via critical point theory." Czechoslovak Mathematical Journal 62.4 (2012): 951-967. <http://eudml.org/doc/246575>.
@article{Galewski2012,
abstract = {In this paper we investigate the existence of solutions to impulsive problems with a $p(t)$-Laplacian and Dirichlet boundary value conditions. We introduce two types of solutions, namely a weak and a classical one which coincide because of the fundamental lemma of the calculus of variations. Firstly we investigate the existence of solution to the linear problem, i.e. a problem with a fixed rigth hand side. Then we use a direct variational method and next a mountain pass approach in order to get the existence of at least one weak solution to the nonlinear problem.},
author = {Galewski, Marek, O'Regan, Donal},
journal = {Czechoslovak Mathematical Journal},
keywords = {$p( t)$-Laplacian; impulsive condition; critical point; variational method; Dirichlet problem; -Laplacian; impulsive condition; critical point; variational method; Dirichlet problem},
language = {eng},
number = {4},
pages = {951-967},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Impulsive boundary value problems for $p(t)$-Laplacian’s via critical point theory},
url = {http://eudml.org/doc/246575},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Galewski, Marek
AU - O'Regan, Donal
TI - Impulsive boundary value problems for $p(t)$-Laplacian’s via critical point theory
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 951
EP - 967
AB - In this paper we investigate the existence of solutions to impulsive problems with a $p(t)$-Laplacian and Dirichlet boundary value conditions. We introduce two types of solutions, namely a weak and a classical one which coincide because of the fundamental lemma of the calculus of variations. Firstly we investigate the existence of solution to the linear problem, i.e. a problem with a fixed rigth hand side. Then we use a direct variational method and next a mountain pass approach in order to get the existence of at least one weak solution to the nonlinear problem.
LA - eng
KW - $p( t)$-Laplacian; impulsive condition; critical point; variational method; Dirichlet problem; -Laplacian; impulsive condition; critical point; variational method; Dirichlet problem
UR - http://eudml.org/doc/246575
ER -
References
top- Benchohra, M., Henderson, J., Ntouyas, S., Impulsive Differential Equations and Inclusions, Contemporary Mathematics and Its Applications, 2. Hindawi Publishing Corporation, New York (2006). (2006) Zbl1130.34003MR2322133
- Chen, Y., Levine, S., Rao, M., 10.1137/050624522, SIAM J. Appl. Math. 66 (2006), 1383-1406. (2006) Zbl1102.49010MR2246061DOI10.1137/050624522
- Fan, X. L., Zhang, Q. H., 10.1016/S0362-546X(02)00150-5, Nonlinear Anal., Theory Methods Appl. 52 (2003), 1843-1852. (2003) Zbl1146.35353MR1954585DOI10.1016/S0362-546X(02)00150-5
- Fan, X. L., Zhao, D., 10.1006/jmaa.2000.7617, J. Math. Anal. Appl. 263 (2001), 424-446. (2001) MR1866056DOI10.1006/jmaa.2000.7617
- Feng, M., Xie, D., 10.1016/j.cam.2008.01.024, J. Comput. Appl. Math. 223 (2009), 438-448. (2009) Zbl1159.34022MR2463127DOI10.1016/j.cam.2008.01.024
- Ge, W., Tian, Y., 10.1017/S0013091506001532, Proc. Edinb. Math. Soc., II. Ser. 51 (2008), 509-527. (2008) Zbl1163.34015MR2465922DOI10.1017/S0013091506001532
- Harjulehto, P., Hästö, P., Le, U. V., Nuortio, M., 10.1016/j.na.2010.02.033, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4551-4574. (2010) Zbl1188.35072MR2639204DOI10.1016/j.na.2010.02.033
- Jankowski, T., 10.1016/j.amc.2008.02.040, Appl. Math. Comput. 202 (2008), 550-561. (2008) MR2435690DOI10.1016/j.amc.2008.02.040
- Mawhin, J., Problemes de Dirichlet Variationnels non Linéaires, French Les Presses de l'Université de Montréal, Montreal (1987). (1987) Zbl0644.49001MR0906453
- Nieto, J. J., O'Regan, D., Variational approach to impulsive differential equations, Nonlinear Anal., Real World Appl. 10 (2009), 680-690. (2009) Zbl1167.34318MR2474254
- Růžička, M., 10.1007/BFb0104030, Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000. Zbl0968.76531MR1810360DOI10.1007/BFb0104030
- Teng, K., Zhang, Ch., Existence of solution to boundary value problem for impulsive differential equations, Nonlinear Anal., Real World Appl. 11 (2010), 4431-4441. (2010) Zbl1207.34034MR2683887
- Troutman, J. L., Variational Calculus with Elementary Convexity. With the assistence of W. Hrusa, Undergraduate Texts in Mathematics. Springer, New York (1983). (1983) Zbl0523.49001MR0697723
- Zhang, H., Li, Z., Variational approach to impulsive differential equations with periodic boundary conditions, Nonlinear Anal., Real World Appl. 11 (2010), 67-78. (2010) Zbl1186.34089MR2570525
- Zhang, Z., Yuan, R., An application of variational methods to Dirichlet boundary value problem with impulses, Nonlinear Anal., Real World Appl. 11 (2010), 155-162. (2010) Zbl1191.34039MR2570535
- Zhikov, V. V., 10.1070/IM1987v029n01ABEH000958, Math. USSR, Izv. 29 (1987), 33-66; translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50 675-710 (1986). (1986) Zbl0599.49031MR0864171DOI10.1070/IM1987v029n01ABEH000958
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.