k -torsionless modules with finite Gorenstein dimension

Maryam Salimi; Elham Tavasoli; Siamak Yassemi

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 3, page 663-672
  • ISSN: 0011-4642

Abstract

top
Let R be a commutative Noetherian ring. It is shown that the finitely generated R -module M with finite Gorenstein dimension is reflexive if and only if M 𝔭 is reflexive for 𝔭 Spec ( R ) with depth ( R 𝔭 ) 1 , and G- dim R 𝔭 ( M 𝔭 ) depth ( R 𝔭 ) - 2 for 𝔭 Spec ( R ) with depth ( R 𝔭 ) 2 . This gives a generalization of Serre and Samuel’s results on reflexive modules over a regular local ring and a generalization of a recent result due to Belshoff. In addition, for n 2 we give a characterization of n -Gorenstein rings via Gorenstein dimension of the dual of modules. Finally it is shown that every R -module has a k -torsionless cover provided R is a k -Gorenstein ring.

How to cite

top

Salimi, Maryam, Tavasoli, Elham, and Yassemi, Siamak. "$k$-torsionless modules with finite Gorenstein dimension." Czechoslovak Mathematical Journal 62.3 (2012): 663-672. <http://eudml.org/doc/246577>.

@article{Salimi2012,
abstract = {Let $R$ be a commutative Noetherian ring. It is shown that the finitely generated $R$-module $M$ with finite Gorenstein dimension is reflexive if and only if $M_\{\mathfrak \{p\}\}$ is reflexive for $\{\mathfrak \{p\}\} \in \{\rm Spec\}(R) $ with $\{\rm depth\}(R_\{\mathfrak \{p\}\}) \le 1$, and $\{\mbox\{G-\{\rm dim\}\}\}_\{R_\{\mathfrak \{p\}\}\} (M_\{\mathfrak \{p\}\}) \le \{\rm depth\}(R_\{\mathfrak \{p\}\})-2 $ for $\{\mathfrak \{p\}\}\in \{\rm Spec\} (R) $ with $\{\rm depth\}(R_\{\mathfrak \{p\}\})\ge 2 $. This gives a generalization of Serre and Samuel’s results on reflexive modules over a regular local ring and a generalization of a recent result due to Belshoff. In addition, for $n\ge 2$ we give a characterization of $n$-Gorenstein rings via Gorenstein dimension of the dual of modules. Finally it is shown that every $R$-module has a $k$-torsionless cover provided $R$ is a $k$-Gorenstein ring.},
author = {Salimi, Maryam, Tavasoli, Elham, Yassemi, Siamak},
journal = {Czechoslovak Mathematical Journal},
keywords = {torsionless module; reflexive module; Gorenstein dimension; Gorenstein dimension; torsionless module},
language = {eng},
number = {3},
pages = {663-672},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$k$-torsionless modules with finite Gorenstein dimension},
url = {http://eudml.org/doc/246577},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Salimi, Maryam
AU - Tavasoli, Elham
AU - Yassemi, Siamak
TI - $k$-torsionless modules with finite Gorenstein dimension
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 663
EP - 672
AB - Let $R$ be a commutative Noetherian ring. It is shown that the finitely generated $R$-module $M$ with finite Gorenstein dimension is reflexive if and only if $M_{\mathfrak {p}}$ is reflexive for ${\mathfrak {p}} \in {\rm Spec}(R) $ with ${\rm depth}(R_{\mathfrak {p}}) \le 1$, and ${\mbox{G-{\rm dim}}}_{R_{\mathfrak {p}}} (M_{\mathfrak {p}}) \le {\rm depth}(R_{\mathfrak {p}})-2 $ for ${\mathfrak {p}}\in {\rm Spec} (R) $ with ${\rm depth}(R_{\mathfrak {p}})\ge 2 $. This gives a generalization of Serre and Samuel’s results on reflexive modules over a regular local ring and a generalization of a recent result due to Belshoff. In addition, for $n\ge 2$ we give a characterization of $n$-Gorenstein rings via Gorenstein dimension of the dual of modules. Finally it is shown that every $R$-module has a $k$-torsionless cover provided $R$ is a $k$-Gorenstein ring.
LA - eng
KW - torsionless module; reflexive module; Gorenstein dimension; Gorenstein dimension; torsionless module
UR - http://eudml.org/doc/246577
ER -

References

top
  1. Auslander, M., Bridger, M., Stable module theory, Mem. Am. Math. Soc. 94 (1969). (1969) Zbl0204.36402MR0269685
  2. Avramov, L. L., Iyengar, S. B., Lipman, J., 10.2140/ant.2010.4.47, Algebra Number Theory 4 (2010), 47-86. (2010) Zbl1194.13017MR2592013DOI10.2140/ant.2010.4.47
  3. Belshoff, R., Remarks on reflexive modules, covers, and envelopes, Beitr. Algebra Geom. 50 (2009), 353-362. (2009) Zbl1186.13004MR2572005
  4. Bruns, W., Herzog, J., Cohen-Macaulay Rings, Cambridge University Press, Cambridge (1993). (1993) Zbl0788.13005MR1251956
  5. Christensen, L. W., Holm, H., 10.4153/CJM-2009-004-x, Can. J. Math. 61 (2009), 76-108. (2009) Zbl1173.13016MR2488450DOI10.4153/CJM-2009-004-x
  6. Christensen, L. W., Foxby, H. B., Holm, H., Beyond Totally Reflexive Modules and Back: A Survey on Gorenstein Dimensions, Marco Fontana, Commutative algebra. Noetherian and non-Noetherian perspectives New York, 2011 101-143. Zbl1225.13019MR2762509
  7. Enochs, E., Jenda, O. M. G., Relative Homological Algebra, De Gruyter Expositions in Mathematics. 30. Berlin: Walter de Gruyter. xi (2000). (2000) Zbl0952.13001MR1753146
  8. Huneke, C., Wiegand, R., 10.1007/BF01459794, Math. Ann. 299 (1994), 449-476. (1994) Zbl0803.13008MR1282227DOI10.1007/BF01459794
  9. Huneke, C., Wiegand, R., 10.1007/BF01459794, Math. Ann. 338 (2007), 291-293. (2007) MR1282227DOI10.1007/BF01459794
  10. Maşek, V., 10.1080/00927870008827189, Commun. Algebra 28 (2000), 5783-5811. (2000) Zbl1002.13005MR1808604DOI10.1080/00927870008827189
  11. Samuel, P., 10.24033/bsmf.1608, French Bull. Soc. Math. Fr. 92 (1964), 237-249. (1964) Zbl0123.03304MR0186702DOI10.24033/bsmf.1608
  12. Serre, J.-P., Classes des corps cyclotomiques, Semin. Bourbaki 11 (1958/59), 11. (1958) 
  13. Vasconcelos, W., 10.1090/S0002-9939-1968-0237480-2, Proc. Am. Math. Soc. 19 (1968), 1349-1355. (1968) Zbl0167.31201MR0237480DOI10.1090/S0002-9939-1968-0237480-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.