-torsionless modules with finite Gorenstein dimension
Maryam Salimi; Elham Tavasoli; Siamak Yassemi
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 3, page 663-672
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSalimi, Maryam, Tavasoli, Elham, and Yassemi, Siamak. "$k$-torsionless modules with finite Gorenstein dimension." Czechoslovak Mathematical Journal 62.3 (2012): 663-672. <http://eudml.org/doc/246577>.
@article{Salimi2012,
abstract = {Let $R$ be a commutative Noetherian ring. It is shown that the finitely generated $R$-module $M$ with finite Gorenstein dimension is reflexive if and only if $M_\{\mathfrak \{p\}\}$ is reflexive for $\{\mathfrak \{p\}\} \in \{\rm Spec\}(R) $ with $\{\rm depth\}(R_\{\mathfrak \{p\}\}) \le 1$, and $\{\mbox\{G-\{\rm dim\}\}\}_\{R_\{\mathfrak \{p\}\}\} (M_\{\mathfrak \{p\}\}) \le \{\rm depth\}(R_\{\mathfrak \{p\}\})-2 $ for $\{\mathfrak \{p\}\}\in \{\rm Spec\} (R) $ with $\{\rm depth\}(R_\{\mathfrak \{p\}\})\ge 2 $. This gives a generalization of Serre and Samuel’s results on reflexive modules over a regular local ring and a generalization of a recent result due to Belshoff. In addition, for $n\ge 2$ we give a characterization of $n$-Gorenstein rings via Gorenstein dimension of the dual of modules. Finally it is shown that every $R$-module has a $k$-torsionless cover provided $R$ is a $k$-Gorenstein ring.},
author = {Salimi, Maryam, Tavasoli, Elham, Yassemi, Siamak},
journal = {Czechoslovak Mathematical Journal},
keywords = {torsionless module; reflexive module; Gorenstein dimension; Gorenstein dimension; torsionless module},
language = {eng},
number = {3},
pages = {663-672},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$k$-torsionless modules with finite Gorenstein dimension},
url = {http://eudml.org/doc/246577},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Salimi, Maryam
AU - Tavasoli, Elham
AU - Yassemi, Siamak
TI - $k$-torsionless modules with finite Gorenstein dimension
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 663
EP - 672
AB - Let $R$ be a commutative Noetherian ring. It is shown that the finitely generated $R$-module $M$ with finite Gorenstein dimension is reflexive if and only if $M_{\mathfrak {p}}$ is reflexive for ${\mathfrak {p}} \in {\rm Spec}(R) $ with ${\rm depth}(R_{\mathfrak {p}}) \le 1$, and ${\mbox{G-{\rm dim}}}_{R_{\mathfrak {p}}} (M_{\mathfrak {p}}) \le {\rm depth}(R_{\mathfrak {p}})-2 $ for ${\mathfrak {p}}\in {\rm Spec} (R) $ with ${\rm depth}(R_{\mathfrak {p}})\ge 2 $. This gives a generalization of Serre and Samuel’s results on reflexive modules over a regular local ring and a generalization of a recent result due to Belshoff. In addition, for $n\ge 2$ we give a characterization of $n$-Gorenstein rings via Gorenstein dimension of the dual of modules. Finally it is shown that every $R$-module has a $k$-torsionless cover provided $R$ is a $k$-Gorenstein ring.
LA - eng
KW - torsionless module; reflexive module; Gorenstein dimension; Gorenstein dimension; torsionless module
UR - http://eudml.org/doc/246577
ER -
References
top- Auslander, M., Bridger, M., Stable module theory, Mem. Am. Math. Soc. 94 (1969). (1969) Zbl0204.36402MR0269685
- Avramov, L. L., Iyengar, S. B., Lipman, J., 10.2140/ant.2010.4.47, Algebra Number Theory 4 (2010), 47-86. (2010) Zbl1194.13017MR2592013DOI10.2140/ant.2010.4.47
- Belshoff, R., Remarks on reflexive modules, covers, and envelopes, Beitr. Algebra Geom. 50 (2009), 353-362. (2009) Zbl1186.13004MR2572005
- Bruns, W., Herzog, J., Cohen-Macaulay Rings, Cambridge University Press, Cambridge (1993). (1993) Zbl0788.13005MR1251956
- Christensen, L. W., Holm, H., 10.4153/CJM-2009-004-x, Can. J. Math. 61 (2009), 76-108. (2009) Zbl1173.13016MR2488450DOI10.4153/CJM-2009-004-x
- Christensen, L. W., Foxby, H. B., Holm, H., Beyond Totally Reflexive Modules and Back: A Survey on Gorenstein Dimensions, Marco Fontana, Commutative algebra. Noetherian and non-Noetherian perspectives New York, 2011 101-143. Zbl1225.13019MR2762509
- Enochs, E., Jenda, O. M. G., Relative Homological Algebra, De Gruyter Expositions in Mathematics. 30. Berlin: Walter de Gruyter. xi (2000). (2000) Zbl0952.13001MR1753146
- Huneke, C., Wiegand, R., 10.1007/BF01459794, Math. Ann. 299 (1994), 449-476. (1994) Zbl0803.13008MR1282227DOI10.1007/BF01459794
- Huneke, C., Wiegand, R., 10.1007/BF01459794, Math. Ann. 338 (2007), 291-293. (2007) MR1282227DOI10.1007/BF01459794
- Maşek, V., 10.1080/00927870008827189, Commun. Algebra 28 (2000), 5783-5811. (2000) Zbl1002.13005MR1808604DOI10.1080/00927870008827189
- Samuel, P., 10.24033/bsmf.1608, French Bull. Soc. Math. Fr. 92 (1964), 237-249. (1964) Zbl0123.03304MR0186702DOI10.24033/bsmf.1608
- Serre, J.-P., Classes des corps cyclotomiques, Semin. Bourbaki 11 (1958/59), 11. (1958)
- Vasconcelos, W., 10.1090/S0002-9939-1968-0237480-2, Proc. Am. Math. Soc. 19 (1968), 1349-1355. (1968) Zbl0167.31201MR0237480DOI10.1090/S0002-9939-1968-0237480-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.