Generalized Thue-Morse words and palindromic richness
Kybernetika (2012)
- Volume: 48, Issue: 3, page 361-370
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topStarosta, Štěpán. "Generalized Thue-Morse words and palindromic richness." Kybernetika 48.3 (2012): 361-370. <http://eudml.org/doc/246604>.
@article{Starosta2012,
abstract = {We prove that the generalized Thue-Morse word $\mathbf \{t\}_\{b,m\}$ defined for $b \ge 2$ and $m \ge 1$ as $\mathbf \{t\}_\{b,m\} = \left( s_b(n) ~\@mod \;m \right)_\{n=0\}^\{+\infty \}$, where $s_b(n)$ denotes the sum of digits in the base-$b$ representation of the integer $n$, has its language closed under all elements of a group $D_m$ isomorphic to the dihedral group of order $2m$ consisting of morphisms and antimorphisms. Considering antimorphisms $\Theta \in D_m$, we show that $\mathbf \{t\}_\{b,m\}$ is saturated by $\Theta $-palindromes up to the highest possible level. Using the generalisation of palindromic richness recently introduced by the author and E. Pelantová, we show that $\mathbf \{t\}_\{b,m\}$ is $D_m$-rich. We also calculate the factor complexity of $\mathbf \{t\}_\{b,m\}$.},
author = {Starosta, Štěpán},
journal = {Kybernetika},
keywords = {palindrome; palindromic richness; Thue-Morse; Theta-palindrome; palindrome; palindromic richness; Thue-Morse; Theta-palindrome},
language = {eng},
number = {3},
pages = {361-370},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Generalized Thue-Morse words and palindromic richness},
url = {http://eudml.org/doc/246604},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Starosta, Štěpán
TI - Generalized Thue-Morse words and palindromic richness
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 3
SP - 361
EP - 370
AB - We prove that the generalized Thue-Morse word $\mathbf {t}_{b,m}$ defined for $b \ge 2$ and $m \ge 1$ as $\mathbf {t}_{b,m} = \left( s_b(n) ~\@mod \;m \right)_{n=0}^{+\infty }$, where $s_b(n)$ denotes the sum of digits in the base-$b$ representation of the integer $n$, has its language closed under all elements of a group $D_m$ isomorphic to the dihedral group of order $2m$ consisting of morphisms and antimorphisms. Considering antimorphisms $\Theta \in D_m$, we show that $\mathbf {t}_{b,m}$ is saturated by $\Theta $-palindromes up to the highest possible level. Using the generalisation of palindromic richness recently introduced by the author and E. Pelantová, we show that $\mathbf {t}_{b,m}$ is $D_m$-rich. We also calculate the factor complexity of $\mathbf {t}_{b,m}$.
LA - eng
KW - palindrome; palindromic richness; Thue-Morse; Theta-palindrome; palindrome; palindromic richness; Thue-Morse; Theta-palindrome
UR - http://eudml.org/doc/246604
ER -
References
top- Allouche, J.-P., Shallit, J., Sums of digits, overlaps, and palindromes, Discrete Math. Theoret. Comput. Sci. 4 (2000), 1–10. Zbl1013.11004MR1755723
- Baláži, P., Masáková, Z., Pelantová, E., 10.1016/j.tcs.2007.03.019, Theoret. Comput. Sci. 380 (2007), 3, 266–275. Zbl1119.68137MR2330997DOI10.1016/j.tcs.2007.03.019
- Balková, L., Factor frequencies in generalized Thue-Morse words, Kybernetika 48 (2012), 3, 371–385.
- Brlek, S., 10.1016/0166-218X(92)90274-E, Discrete Appl. Math. 24 (1989), 1–3, 83–96. Zbl0683.20045MR1011264DOI10.1016/0166-218X(92)90274-E
- Brlek, S., Hamel, S., Nivat, M., Reutenauer, C., 10.1142/S012905410400242X, Internat. J. Found. Comput. 15 (2004), 2, 293–306. Zbl1067.68113MR2071459DOI10.1142/S012905410400242X
- Bucci, M., De Luca, A., Glen, A., Zamboni, L. Q., 10.1016/j.aam.2008.03.005, Adv. Appl. Math. 42 (2009), no. 1, 60–74. Zbl1160.68027MR2475313DOI10.1016/j.aam.2008.03.005
- Cassaigne, J., Complexity and special factors, Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 1, 67–88. Zbl0921.68065MR1440670
- de Luca, A., Varricchio, S., 10.1016/0304-3975(89)90013-3, Theoret. Comput. Sci. 63 (1989), 3, 333–348. Zbl0671.10050MR0993769DOI10.1016/0304-3975(89)90013-3
- Droubay, X., Justin, J., Pirillo, G., 10.1016/S0304-3975(99)00320-5, Theoret. Comput. Sci. 255 (2001), 1–2, 539–553. Zbl0981.68126MR1819089DOI10.1016/S0304-3975(99)00320-5
- Frid, A., Applying a uniform marked morphism to a word, Discrete Math. Theoret. Comput. Sci. 3 (1999), 125–140. Zbl0935.68055MR1734902
- Glen, A., Justin, J., Widmer, S., Zamboni, L. Q., 10.1016/j.ejc.2008.04.006, European J. Combin. 30 (2009), 2, 510–531. Zbl1169.68040MR2489283DOI10.1016/j.ejc.2008.04.006
- Pelantová, E., Starosta, Š., Languages invariant under more symmetries: overlapping factors versus palindromic richness, To appear in Discrete Math., preprint available at http://arxiv.org/abs/1103.4051 (2011).
- Prouhet, E., Mémoire sur quelques relations entre les puissances des nombres, C. R. Acad. Sci. Paris 33 (1851), 225.
- Starosta, Š., 10.1016/j.tcs.2010.12.011, Theoret. Comput. Sci. 412 (2011), 12–14, 1111–1121. Zbl1211.68302MR2797753DOI10.1016/j.tcs.2010.12.011
- Tromp, J., Shallit, J., 10.1016/0020-0190(95)00074-M, Inf. Process. Lett. (1995), 313–316. Zbl0875.68596MR1336711DOI10.1016/0020-0190(95)00074-M
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.