Mixed complementarity problems for robust optimization equilibrium in bimatrix game
Applications of Mathematics (2012)
- Volume: 57, Issue: 5, page 503-520
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLuo, Guimei. "Mixed complementarity problems for robust optimization equilibrium in bimatrix game." Applications of Mathematics 57.5 (2012): 503-520. <http://eudml.org/doc/246628>.
@article{Luo2012,
abstract = {In this paper, we investigate the bimatrix game using the robust optimization approach, in which each player may neither exactly estimate his opponent’s strategies nor evaluate his own cost matrix accurately while he may estimate a bounded uncertain set. We obtain computationally tractable robust formulations which turn to be linear programming problems and then solving a robust optimization equilibrium can be converted to solving a mixed complementarity problem under the $l_1\cap l_\infty $-norm. Some numerical results are presented to illustrate the behavior of the robust optimization equilibrium.},
author = {Luo, Guimei},
journal = {Applications of Mathematics},
keywords = {robust optimization equilibrium; bimatrix game; $l_1\cap l_\infty $-norm; mixed complementarity problem; robust optimization equilibrium; bimatrix game; -norm; mixed complementarity problem},
language = {eng},
number = {5},
pages = {503-520},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Mixed complementarity problems for robust optimization equilibrium in bimatrix game},
url = {http://eudml.org/doc/246628},
volume = {57},
year = {2012},
}
TY - JOUR
AU - Luo, Guimei
TI - Mixed complementarity problems for robust optimization equilibrium in bimatrix game
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 5
SP - 503
EP - 520
AB - In this paper, we investigate the bimatrix game using the robust optimization approach, in which each player may neither exactly estimate his opponent’s strategies nor evaluate his own cost matrix accurately while he may estimate a bounded uncertain set. We obtain computationally tractable robust formulations which turn to be linear programming problems and then solving a robust optimization equilibrium can be converted to solving a mixed complementarity problem under the $l_1\cap l_\infty $-norm. Some numerical results are presented to illustrate the behavior of the robust optimization equilibrium.
LA - eng
KW - robust optimization equilibrium; bimatrix game; $l_1\cap l_\infty $-norm; mixed complementarity problem; robust optimization equilibrium; bimatrix game; -norm; mixed complementarity problem
UR - http://eudml.org/doc/246628
ER -
References
top- Aghassi, M., Bertsimas, D., 10.1007/s10107-005-0686-0, Math. Program. 107 (2006), 231-273. (2006) Zbl1134.91309MR2218128DOI10.1007/s10107-005-0686-0
- Ben-Tal, A., Nemirovski, A., 10.1287/moor.23.4.769, Math. Oper. Res. 23 (1998), 769-805. (1998) Zbl0977.90052MR1662410DOI10.1287/moor.23.4.769
- Ben-Tal, A., Nemirovski, A., 10.1016/S0167-6377(99)00016-4, Oper. Res. Lett. 25 (1999), 1-13. (1999) Zbl0941.90053MR1702364DOI10.1016/S0167-6377(99)00016-4
- Ben-Tal, A., Nemirovski, A., 10.1007/PL00011380, Math. Program. 88 (2000), 411-424. (2000) Zbl0964.90025MR1782149DOI10.1007/PL00011380
- Bertsimas, D., Pachamanova, D., Sim, M., 10.1016/j.orl.2003.12.007, Oper. Res. Lett. 32 (2004), 510-516. (2004) Zbl1054.90046MR2077451DOI10.1016/j.orl.2003.12.007
- Bertsimas, D., Sim, M., 10.1287/opre.1030.0065, Oper. Res. 52 (2004), 35-53. (2004) Zbl1165.90565MR2066239DOI10.1287/opre.1030.0065
- Bertsimas, D., Sim, M., 10.1007/s10107-005-0677-1, Math. Program. 107 (2006), 5-36. (2006) Zbl1134.90026MR2216799DOI10.1007/s10107-005-0677-1
- Chen, X., Sim, M., Sun, P., 10.1287/opre.1070.0441, Oper. Res. 55 (2007), 1058-1071. (2007) MR2372277DOI10.1287/opre.1070.0441
- Ghaoui, L. El, Oustry, F., Lebret, H., 10.1137/S0895479896298130, SIAM J. Matrix Anal. Appl. 18 (1997), 1035-1064. (1997) MR1472008DOI10.1137/S0895479896298130
- Ghaoui, L. El, Oustry, F., Lebret, H., 10.1137/S1052623496305717, SIAM J. Optim. 9 (1998), 33-52. (1998) Zbl0960.93007MR1660106DOI10.1137/S1052623496305717
- Facchinei, F., Pang, J. S., Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol. I, Springer New York (2003). (2003) Zbl1062.90001MR1955648
- Hayashi, S., Yamashita, N., Fukushima, M., 10.1137/S1052623403421516, SIAM J. Optim. 15 (2005), 593-615. (2005) Zbl1114.90139MR2144183DOI10.1137/S1052623403421516
- Hayashi, S., Yamashita, N., Fukushima, M., Robust Nash equilibria and second-order cone complementarity problems, J. Nonlinear. Convex Anal. 6 (2005), 283-296. (2005) Zbl1137.91310MR2159841
- Harsanyi, J. C., 10.1287/mnsc.14.5.320, Manage. Sci. 14 (1968), 320-334. (1968) MR0246650DOI10.1287/mnsc.14.5.320
- Holmström, B., Myerson, R., 10.2307/1912117, Econometrica 51 (1983), 1799-1820. (1983) Zbl0521.90008DOI10.2307/1912117
- Luo, G. M., Li, D. H., Robust optimization equilibrium with deviation measures, Pac. J. Optim. 5 (2009), 427-441. (2009) Zbl1175.91017MR2567016
- Mertens, J., Zamir, S., 10.1007/BF01770224, Int. J. Game Theory 14 (1985), 1-29. (1985) MR0784702DOI10.1007/BF01770224
- jun., J. F. Nash, 10.1073/pnas.36.1.48, Proc. Natl. Acad. Sci. USA 36 (1950), 48-49. (1950) Zbl0036.01104MR0031701DOI10.1073/pnas.36.1.48
- Nash, J., 10.2307/1969529, Ann. Math. 54 (1951), 286-295. (1951) Zbl0045.08202MR0043432DOI10.2307/1969529
- Soyster, A. L., 10.1287/opre.21.5.1154, Oper. Res. 21 (1973), 1154-1157. (1973) Zbl0266.90046DOI10.1287/opre.21.5.1154
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.