Do Barbero-Immirzi connections exist in different dimensions and signatures?
L. Fatibene; Mauro Francaviglia; S. Garruto
Communications in Mathematics (2012)
- Volume: 20, Issue: 1, page 3-11
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topFatibene, L., Francaviglia, Mauro, and Garruto, S.. "Do Barbero-Immirzi connections exist in different dimensions and signatures?." Communications in Mathematics 20.1 (2012): 3-11. <http://eudml.org/doc/246648>.
@article{Fatibene2012,
abstract = {We shall show that no reductive splitting of the spin group exists in dimension $3\le m\le 20$ other than in dimension $m=4$. In dimension $4$ there are reductive splittings in any signature. Euclidean and Lorentzian signatures are reviewed in particular and signature $(2,2)$ is investigated explicitly in detail. Reductive splittings allow to define a global $\mbox\{SU\} (2)$-connection over spacetime which encodes in an weird way the holonomy of the standard spin connection. The standard Barbero-Immirzi (BI) connection used in LQG is then obtained by restriction to a spacelike slice. This mechanism provides a good control on globality and covariance of BI connection showing that in dimension other than $4$ one needs to provide some other mechanism to define the analogous of BI connection and control its globality.},
author = {Fatibene, L., Francaviglia, Mauro, Garruto, S.},
journal = {Communications in Mathematics},
keywords = {Barbero-Immirzi connection; global connections; Loop Quantum Gravity; Barbero-Immirzi connection; global connections; loop quantum gravity},
language = {eng},
number = {1},
pages = {3-11},
publisher = {University of Ostrava},
title = {Do Barbero-Immirzi connections exist in different dimensions and signatures?},
url = {http://eudml.org/doc/246648},
volume = {20},
year = {2012},
}
TY - JOUR
AU - Fatibene, L.
AU - Francaviglia, Mauro
AU - Garruto, S.
TI - Do Barbero-Immirzi connections exist in different dimensions and signatures?
JO - Communications in Mathematics
PY - 2012
PB - University of Ostrava
VL - 20
IS - 1
SP - 3
EP - 11
AB - We shall show that no reductive splitting of the spin group exists in dimension $3\le m\le 20$ other than in dimension $m=4$. In dimension $4$ there are reductive splittings in any signature. Euclidean and Lorentzian signatures are reviewed in particular and signature $(2,2)$ is investigated explicitly in detail. Reductive splittings allow to define a global $\mbox{SU} (2)$-connection over spacetime which encodes in an weird way the holonomy of the standard spin connection. The standard Barbero-Immirzi (BI) connection used in LQG is then obtained by restriction to a spacelike slice. This mechanism provides a good control on globality and covariance of BI connection showing that in dimension other than $4$ one needs to provide some other mechanism to define the analogous of BI connection and control its globality.
LA - eng
KW - Barbero-Immirzi connection; global connections; Loop Quantum Gravity; Barbero-Immirzi connection; global connections; loop quantum gravity
UR - http://eudml.org/doc/246648
ER -
References
top- Barbero, F., 10.1103/PhysRevD.51.5507, Phys. Rev. D, 51, 10, 1995, 5507-5510 (1995) MR1338108DOI10.1103/PhysRevD.51.5507
- Immirzi, G., 10.1016/S0920-5632(97)00354-X, Nucl. Phys. Proc. Suppl., 57, 1-3, 1997, 65-72 (1997) Zbl0976.83504MR1480184DOI10.1016/S0920-5632(97)00354-X
- Rovelli, C., Quantum Gravity, 2004, Cambridge University Press, Cambridge (2004) Zbl1129.83322MR2106565
- Samuel, J., 10.1088/0264-9381/17/20/101, Classical Quant. Grav., 17, 2000, 141-148 (2000) Zbl0981.83039MR1791768DOI10.1088/0264-9381/17/20/101
- Thiemann, T., Loop Quantum Gravity: An Inside View, Lecture Notes in Physics, 721, , 2007, 185-263, arXiv:hep-th/0608210 (2007) Zbl1151.83019MR2397989
- Fatibene, L., Francaviglia, M., Rovelli, C., 10.1088/0264-9381/24/11/017, Classical Quant. Grav., 24, 2007, 3055-3066, gr-qc/0702134 (2007) MR2330908DOI10.1088/0264-9381/24/11/017
- Fatibene, L., Francaviglia, M., Ferraris, M., 10.1103/PhysRevD.84.064035, Phys. Rev. D, 84, 6, 2011, 064035-064041 (2011) DOI10.1103/PhysRevD.84.064035
- Berger, M., Sur les groupes d'holonomie des vari?t?s ? connexion affine et des vari?t?s Riemanniennes, Bull. Soc. Math. France, 83, 1955, 279-330 (1955) MR0079806
- Merkulov, S., Schwachh?fer, L., 10.2307/121098, Annals of Mathematics, 150, 1, 1999, 77-149, arXiv:math/9907206 (1999) MR1715321DOI10.2307/121098
- Kobayashi, S., Nomizu, K., Foundations of differential geometry, 1963, John Wiley & Sons, Inc., New York, USA (1963) Zbl0119.37502
- Antonsen, F., Flagga, M.S.N., 10.1023/A:1014067520822, Int. J. Theor. Phys., 41, 2, 2002, 171-198 (2002) Zbl0996.83010MR1888491DOI10.1023/A:1014067520822
- Holst, S., 10.1103/PhysRevD.53.5966, Phys. Rev. D, 53, 10, 1996, 5966-5969 (1996) MR1388932DOI10.1103/PhysRevD.53.5966
- Fatibene, L., Francaviglia, M., Rovelli, C., 10.1088/0264-9381/24/16/014, Classical Quant. Grav., 24, 2007, 4207-4217, gr-qc/0706.1899 (2007) Zbl1205.83027MR2348375DOI10.1088/0264-9381/24/16/014
- Fatibene, L., Ferraris, M., Francaviglia, M., 10.1088/0264-9381/27/16/165021, Classical Quant. Grav., 27, 16, 2010, 165021. arXiv:1003.1617 (2010) MR2660977DOI10.1088/0264-9381/27/16/165021
- Alexandrov, S., 10.1103/PhysRevD.65.024011, Phys. Rev. D, 65, 2001, 024011-024018 (2001) MR1892140DOI10.1103/PhysRevD.65.024011
- Alexandrov, S., Livine, E.R., 10.1103/PhysRevD.67.044009, Phys. Rev. D, 67, 4, 2003, 044009-044024 (2003) MR1975984DOI10.1103/PhysRevD.67.044009
- Bodendorfer, N., Thiemann, T., Thurn, A., New Variables for Classical and Quantum Gravity in all Dimensions III. Quantum Theory, arXiv:1105.3705v1 [gr-qc]
- Nieto, J.A., Canonical Gravity in Two Time and Two Space Dimensions, arXiv:1107.0718v3 [gr-qc]
- Ferraris, M., Francaviglia, M., Gatto, L., Reducibility of -invariant Linear Connections in Principal -bundles, Colloq. Math. Soc. J. B., 56 Differential Geometry, 1989, 231-252 (1989) MR1211660
- Godina, M., Matteucci, P., 10.1016/S0393-0440(02)00174-2, Journal of Geometry and Physics, 47, 2003, 66-86 (2003) Zbl1035.53035MR1985484DOI10.1016/S0393-0440(02)00174-2
- Fatibene, L., Francaviglia, M., Natural and gauge natural formalism for classical field theories. A geometric perspective including spinors and gauge theories, 2003, Kluwer Academic Publishers, Dordrecht (2003) Zbl1138.81303MR2039451
- Chu, K., Farel, C., Fee, G., McLenaghan, R., Fields Inst. Commun. 15, (1997) 195 MR1463205
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.