Some remarks on Nagumo's theorem
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 1, page 235-242
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- Agarwal, R. P., Heikkilä, S., 10.1023/A:1015658621390, Acta Math. Hung. 94 (2002), 67-92. (2002) Zbl1006.34002MR1905788DOI10.1023/A:1015658621390
- Athanassov, Z. S., Uniqueness and convergence of successive approximations for ordinary differential equations, Math. Jap. 35 (1990), 351-367. (1990) Zbl0709.34002MR1049101
- Bellman, R., Stability Theory of Differential Equations, New York-London: McGraw-Hill Book Company (1953), (166). (166) MR0061235
- Constantin, A., Solutions globales d'équations différentielles perturbées, C. R. Acad. Sci., Paris, Sér. I 320 (1995), 1319-1322. (1995) Zbl0839.34002MR1338279
- Constantin, A., On Nagumo's theorem, Proc. Japan Acad., Ser. A 86 (2010), 41-44. (2010) Zbl1192.34014MR2590189
- Coppel, W. A., Stability and Asymptotic Behavior of Differential Equations, Boston: D. C. Heath and Company (1965), 166. (1965) Zbl0154.09301MR0190463
- Lipovan, O., 10.1006/jmaa.2000.7085, J. Math. Anal. Appl. 252 (2000), 389-401. (2000) Zbl0974.26007MR1797863DOI10.1006/jmaa.2000.7085
- Nagumo, M., 10.4099/jjm1924.3.0_107, Japanese Journ. of Math. 3 (1926), 107-112. (1926) DOI10.4099/jjm1924.3.0_107
- Negrea, R., On a class of backward stochastic differential equations and applications to the stochastic resonance, "Recent advances in stochastic modeling and data analysis", pp. 26-33, World Sci. Publ., Hackensack, NJ, 2007. MR2449681
- Sonoc, C., On the pathwise uniqueness of solutions of stochastic differential equations, Port. Math. 55 (1998), 451-456. (1998) Zbl0932.60067MR1672118