Some estimates for the first eigenvalue of the Sturm-Liouville problem with a weight integral condition

Maria Telnova

Mathematica Bohemica (2012)

  • Volume: 137, Issue: 2, page 229-238
  • ISSN: 0862-7959

Abstract

top
Let λ 1 ( Q ) be the first eigenvalue of the Sturm-Liouville problem y ' ' - Q ( x ) y + λ y = 0 , y ( 0 ) = y ( 1 ) = 0 , 0 < x < 1 . We give some estimates for m α , β , γ = inf Q T α , β , γ λ 1 ( Q ) and M α , β , γ = sup Q T α , β , γ λ 1 ( Q ) , where T α , β , γ is the set of real-valued measurable on 0 , 1 x α ( 1 - x ) β -weighted L γ -functions Q with non-negative values such that 0 1 x α ( 1 - x ) β Q γ ( x ) d x = 1 ( α , β , γ , γ 0 ) .

How to cite

top

Telnova, Maria. "Some estimates for the first eigenvalue of the Sturm-Liouville problem with a weight integral condition." Mathematica Bohemica 137.2 (2012): 229-238. <http://eudml.org/doc/246694>.

@article{Telnova2012,
abstract = {Let $\lambda _1(Q)$ be the first eigenvalue of the Sturm-Liouville problem \[ y^\{\prime \prime \}-Q(x)y+\lambda y=0,\quad y(0)=y(1)=0,\quad 0<x<1. \] We give some estimates for $m_\{\alpha ,\beta ,\gamma \}=\inf _\{Q\in T_\{\alpha ,\beta ,\gamma \}\}\lambda _1(Q)$ and $M_\{\alpha ,\beta ,\gamma \}=\sup _\{Q\in T_\{\alpha ,\beta ,\gamma \}\}\lambda _1(Q)$, where $T_\{\alpha ,\beta ,\gamma \}$ is the set of real-valued measurable on $\left[0,1\right]$$x^\alpha (1-x)^\beta $-weighted $L_\gamma $-functions $Q$ with non-negative values such that $\int _0^1x^\alpha (1-x)^\beta Q^\{\gamma \}(x) \{\rm d\} x=1$$(\alpha ,\beta ,\gamma \in \mathbb \{R\},\gamma \ne 0)$.},
author = {Telnova, Maria},
journal = {Mathematica Bohemica},
keywords = {first eigenvalue; Sturm-Liouville problem; weight integral condition; first eigenvalue; Sturm-Liouville problem; weight integral condition},
language = {eng},
number = {2},
pages = {229-238},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some estimates for the first eigenvalue of the Sturm-Liouville problem with a weight integral condition},
url = {http://eudml.org/doc/246694},
volume = {137},
year = {2012},
}

TY - JOUR
AU - Telnova, Maria
TI - Some estimates for the first eigenvalue of the Sturm-Liouville problem with a weight integral condition
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 2
SP - 229
EP - 238
AB - Let $\lambda _1(Q)$ be the first eigenvalue of the Sturm-Liouville problem \[ y^{\prime \prime }-Q(x)y+\lambda y=0,\quad y(0)=y(1)=0,\quad 0<x<1. \] We give some estimates for $m_{\alpha ,\beta ,\gamma }=\inf _{Q\in T_{\alpha ,\beta ,\gamma }}\lambda _1(Q)$ and $M_{\alpha ,\beta ,\gamma }=\sup _{Q\in T_{\alpha ,\beta ,\gamma }}\lambda _1(Q)$, where $T_{\alpha ,\beta ,\gamma }$ is the set of real-valued measurable on $\left[0,1\right]$$x^\alpha (1-x)^\beta $-weighted $L_\gamma $-functions $Q$ with non-negative values such that $\int _0^1x^\alpha (1-x)^\beta Q^{\gamma }(x) {\rm d} x=1$$(\alpha ,\beta ,\gamma \in \mathbb {R},\gamma \ne 0)$.
LA - eng
KW - first eigenvalue; Sturm-Liouville problem; weight integral condition; first eigenvalue; Sturm-Liouville problem; weight integral condition
UR - http://eudml.org/doc/246694
ER -

References

top
  1. Egorov, Yu. V., Kondrat'ev, V. A., Estimates for the first eigenvalue in some Sturm-Liouville problems, Russ. Math. Surv. 51 (1996), translation from Usp. Math. Nauk 51 (1996), 73-144. (1996) Zbl0883.34027MR1406051
  2. Kuralbaeva, K. Z., On estimate of the first eigenvalue of a Sturm-Liouville operator, Differents. Uravn. 32 852-853 (1996). (1996) 
  3. Besov, O. V., Il'in, V. P., Nikol'skiy, S. M., Integral Representations of Functions and Imbedding Theorems, Nauka, Moskva (1996), Russian. (1996) MR1450401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.