On the composition factors of a group with the same prime graph as
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 2, page 469-486
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBabai, Azam, and Khosravi, Behrooz. "On the composition factors of a group with the same prime graph as $B_{n}(5)$." Czechoslovak Mathematical Journal 62.2 (2012): 469-486. <http://eudml.org/doc/246706>.
@article{Babai2012,
abstract = {Let $G$ be a finite group. The prime graph of $G$ is a graph whose vertex set is the set of prime divisors of $|G|$ and two distinct primes $p$ and $q$ are joined by an edge, whenever $G$ contains an element of order $pq$. The prime graph of $G$ is denoted by $\Gamma (G)$. It is proved that some finite groups are uniquely determined by their prime graph. In this paper, we show that if $G$ is a finite group such that $\Gamma (G)=\Gamma (B_\{n\}(5))$, where $n\ge 6$, then $G$ has a unique nonabelian composition factor isomorphic to $B_\{n\}(5)$ or $C_\{n\}(5)$.},
author = {Babai, Azam, Khosravi, Behrooz},
journal = {Czechoslovak Mathematical Journal},
keywords = {prime graph; simple group; recognition; quasirecognition; prime graphs; finite simple groups; recognition; quasirecognition; sets of element orders},
language = {eng},
number = {2},
pages = {469-486},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the composition factors of a group with the same prime graph as $B_\{n\}(5)$},
url = {http://eudml.org/doc/246706},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Babai, Azam
AU - Khosravi, Behrooz
TI - On the composition factors of a group with the same prime graph as $B_{n}(5)$
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 469
EP - 486
AB - Let $G$ be a finite group. The prime graph of $G$ is a graph whose vertex set is the set of prime divisors of $|G|$ and two distinct primes $p$ and $q$ are joined by an edge, whenever $G$ contains an element of order $pq$. The prime graph of $G$ is denoted by $\Gamma (G)$. It is proved that some finite groups are uniquely determined by their prime graph. In this paper, we show that if $G$ is a finite group such that $\Gamma (G)=\Gamma (B_{n}(5))$, where $n\ge 6$, then $G$ has a unique nonabelian composition factor isomorphic to $B_{n}(5)$ or $C_{n}(5)$.
LA - eng
KW - prime graph; simple group; recognition; quasirecognition; prime graphs; finite simple groups; recognition; quasirecognition; sets of element orders
UR - http://eudml.org/doc/246706
ER -
References
top- Akhlaghi, Z., Khatami, M., Khosravi, B., 10.1007/s10474-009-8048-7, Acta Math. Hung. 122 (2009), 387-397. (2009) MR2481788DOI10.1007/s10474-009-8048-7
- Akhlaghi, Z., Khosravi, B., Khatami, M., 10.1142/S021819671000587X, Int. J. Algebra Comput. 20 (2010), 847-873. (2010) MR2738548DOI10.1142/S021819671000587X
- Babai, A., Khosravi, B., Hasani, N., Quasirecognition by prime graph of where is a prime, Bull. Malays. Math. Sci. Soc. 32 (2009), 343-350. (2009) MR2562173
- Babai, A., Khosravi, B., 10.1134/S003744661105003X, Sib. Math. J. 52 (2011), 993-1003. (2011) MR2908121DOI10.1134/S003744661105003X
- Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A., Atlas of Finite Groups, Clarendon Press Oxford (1985). (1985) Zbl0568.20001MR0827219
- Guralnick, R. M., Tiep, P. H., 10.1515/jgth.2003.020, J. Group Theory 6 (2003), 271-310. (2003) Zbl1046.20013MR1983368DOI10.1515/jgth.2003.020
- Hagie, M., 10.1081/AGB-120022800, Comm. Algebra 31 (2003), 4405-4424. (2003) Zbl1031.20009MR1995543DOI10.1081/AGB-120022800
- He, H., Shi, W., 10.1142/S0218196709005299, Int. J. Algebra Comput. 19 (2009), 681-698. (2009) Zbl1182.20016MR2547064DOI10.1142/S0218196709005299
- Khatami, M., Khosravi, B., Akhlaghi, Z., NCF-distinguishability by prime graph of , where is a prime, Rocky Mt. J. Math. 41 (2011), 1523-1545. (2011) MR2838076
- Khosravi, B., Babai, A., 10.1007/s00605-009-0155-6, Monatsh. Math. 162 (2011), 289-296. (2011) MR2775847DOI10.1007/s00605-009-0155-6
- Khosravi, A., Khosravi, B., 10.1007/s11202-007-0059-4, Sib. Math. J. 48 (2007), 570-577. (2007) MR2347918DOI10.1007/s11202-007-0059-4
- Khosravi, B., Khosravi, A., 10.1007/s11202-008-0072-2, Sib. Math. J. 49 (2008), 749-757. (2008) MR2456703DOI10.1007/s11202-008-0072-2
- Khosravi, B., Khosravi, B., Khosravi, B., Groups with the same prime graph as a CIT simple group, Houston J. Math. 33 (2007), 967-977. (2007) Zbl1133.20008MR2350073
- Khosravi, B., Khosravi, B., Khosravi, B., 10.1007/s10474-007-6021-x, Acta Math. Hung. 116 (2007), 295-307. (2007) MR2335801DOI10.1007/s10474-007-6021-x
- Khosravi, B., Khosravi, B., Khosravi, B., 10.1007/s00229-007-0160-9, Manuscr. Math. 126 (2008), 49-58. (2008) Zbl1143.20009MR2395248DOI10.1007/s00229-007-0160-9
- Khosravi, B., 10.1007/s11202-009-0040-5, Sib. Math. J. 50 (2009), 355-359. (2009) Zbl1212.20047MR2531768DOI10.1007/s11202-009-0040-5
- Khosravi, B., Some characterizations of related to its prime graph, Publ. Math. 75 (2009), 375-385. (2009) Zbl1207.20008MR2588212
- Khosravi, B., 10.1142/S0219498808003090, J. Algebra Appl. 7 (2008), 735-748. (2008) MR2483329DOI10.1142/S0219498808003090
- Khosravi, B., Moradi, H., 10.1007/s10474-010-0053-3, Acta. Math. Hung. 132 (2011), 140-153. (2011) Zbl1232.20020MR2805484DOI10.1007/s10474-010-0053-3
- Mazurov, V. D., 10.1007/BF02671951, Algebra Logic 36 (1997), 23-32. (1997) MR1454690DOI10.1007/BF02671951
- Sierpiński, W., Elementary Theory of Numbers (Monografie Matematyczne Vol. 42), Państwowe Wydawnictwo Naukowe Warsaw (1964). (1964) MR0175840
- Stensholt, E., 10.1016/0021-8693(78)90211-9, J. Algebra 53 (1978), 136-187. (1978) Zbl0386.20006MR0486182DOI10.1016/0021-8693(78)90211-9
- Vasil'ev, A. V., Vdovin, E. P., 10.1007/s10469-005-0037-5, Algebra Logic 44 (2005), 381-405. (2005) MR2213302DOI10.1007/s10469-005-0037-5
- Vasil'ev, A. V., Vdovin, E. P., Cocliques of maximal size in the prime graph of a finite simple group, http://arxiv.org/abs/0905.1164v1 2893582. MR2893582
- Vasil'ev, A. V., Gorshkov, I. B., 10.1007/s11202-009-0027-2, Sib. Math. J. 50 (2009), 233-238. (2009) MR2531755DOI10.1007/s11202-009-0027-2
- Vasil'ev, A. V., Grechkoseeva, M. A., 10.1023/B:SIMJ.0000028607.23176.5f, Sib. Math. J. 45 (2004), 420-431. (2004) MR2078712DOI10.1023/B:SIMJ.0000028607.23176.5f
- Zavarnitsin, A. V., 10.1007/s10469-006-0020-9, Algebra Logic 43 (2006), 220-231. (2006) MR2287647DOI10.1007/s10469-006-0020-9
- Zsigmondy, K., 10.1007/BF01692444, Monatsh. Math. Phys. 3 (1892), 265-284 German. (1892) MR1546236DOI10.1007/BF01692444
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.