-smoothness of Nemytskii operators on Sobolev-type spaces of periodic functions
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 4, page 507-517
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKmit, Irina. "$C^1$-smoothness of Nemytskii operators on Sobolev-type spaces of periodic functions." Commentationes Mathematicae Universitatis Carolinae 52.4 (2011): 507-517. <http://eudml.org/doc/246718>.
@article{Kmit2011,
abstract = {We consider a class of Nemytskii superposition operators that covers the nonlinear part of traveling wave models from laser dynamics, population dynamics, and chemical kinetics. Our main result is the $C^1$-continuity property of these operators over Sobolev-type spaces of periodic functions.},
author = {Kmit, Irina},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Nemytskii operators; Sobolev-type spaces of periodic functions; $C^1$-smoothness; Nemytskij operator; Sobolev space; travelling wave; smoothness},
language = {eng},
number = {4},
pages = {507-517},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$C^1$-smoothness of Nemytskii operators on Sobolev-type spaces of periodic functions},
url = {http://eudml.org/doc/246718},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Kmit, Irina
TI - $C^1$-smoothness of Nemytskii operators on Sobolev-type spaces of periodic functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 4
SP - 507
EP - 517
AB - We consider a class of Nemytskii superposition operators that covers the nonlinear part of traveling wave models from laser dynamics, population dynamics, and chemical kinetics. Our main result is the $C^1$-continuity property of these operators over Sobolev-type spaces of periodic functions.
LA - eng
KW - Nemytskii operators; Sobolev-type spaces of periodic functions; $C^1$-smoothness; Nemytskij operator; Sobolev space; travelling wave; smoothness
UR - http://eudml.org/doc/246718
ER -
References
top- Adams R.A., Sobolev spaces, Academic Press, New York, 1975. MR0450957
- Akramov T.A., 10.1007/BF02732355, Siberian Math. J. 39 (1998), no. 1, 1–17. Zbl0934.35013MR1623699DOI10.1007/BF02732355
- Akramov T.A., Belonosov V.S., Zelenyak T.I., Lavrent'ev M.M., Jr., Slin'ko M.G., Sheplev V.S., 10.1007/BF02755974, Theoretical Foundations of Chemical Engineering 34 (2000), no. 3, 295–306. DOI10.1007/BF02755974
- Appell J., Zabrejko P., Nonlinear Superposition Operators, Cambridge University Press, Cambridge, UK, 1990. Zbl1156.47052MR1066204
- Chow S.-N., Hale J.K., 10.1007/978-1-4613-8159-4, Grundlehren der Math. Wissenschaften, 251, Springer, New York-Berlin, 1982. Zbl0487.47039MR0660633DOI10.1007/978-1-4613-8159-4
- Conner H.E., 10.1016/0022-0396(71)90046-5, J. Differential Equations 10 (1971), 188–203. Zbl0219.35061MR0289945DOI10.1016/0022-0396(71)90046-5
- Hillen T., Existence theory for correlated random walks on bounded domains, Can. Appl. Math. Q. 18 (2010), no. 1, 1–40. Zbl1201.35127MR2722831
- Hillen T., Hadeler K.P., Hyperbolic systems and transport equations in mathematical biology, in Analysis and Numerics for Conservation Laws, G. Warnecke, Springer, Berlin, 2005, pp. 257–279. Zbl1087.92002MR2169931
- Horsthemke W., 10.1103/PhysRevE.60.2651, Phys. Rev. E 60 (1999), 2651–2663. MR1710882DOI10.1103/PhysRevE.60.2651
- Illner R, Reed M., 10.1137/0144076, SIAM J. Appl. Math. 44 (1984), 1067–1075. Zbl0598.76092MR0766188DOI10.1137/0144076
- Kielhöfer H., Bifurcation Theory. An Introduction with Applications to PDEs, Appl. Math. Sciences, 156, Springer, New York-Berlin, 2004. MR2004250
- Kmit I., Recke L., 10.1016/j.jmaa.2007.01.055, J. Math. Anal. Appl. 335 (2007), 355–370. Zbl1160.35046MR2340326DOI10.1016/j.jmaa.2007.01.055
- Kmit I., Recke L., Fredholmness and smooth dependence for linear hyperbolic periodic-Dirichlet problems, J. Differential Equations(to appear). MR2853567
- Lichtner M., Radziunas M., Recke L., 10.1002/mma.816, Math. Methods Appl. Sci. 30 (2007), 931–960. MR2313730DOI10.1002/mma.816
- Lutscher F., Stevens A., 10.1007/s00332-002-0510-4, J. Nonlinear Sci. 12 (2002), no 6, 619–640. Zbl1026.35071MR1938332DOI10.1007/s00332-002-0510-4
- Platkowski T., Illner R., 10.1137/1030045, SIAM Review 30 (1988), 213–255. Zbl0668.76087MR0941111DOI10.1137/1030045
- Radziunas M., 10.1016/j.physd.2005.11.003, Phys. D 213 (2006), 575–613. Zbl1095.78006MR2186586DOI10.1016/j.physd.2005.11.003
- Radziunas M., Wünsche H.-J., Dynamics of multisection DFB semiconductor lasers: traveling wave and mode approximation models, in Optoelectronic Devices – Advanced Simulation and Analysis, ed. by J. Piprek, Springer, Berlin, 2005, pp. 121–150.
- Slin'ko M.G., 10.1134/S0040579507010022, Theoretical Foundations of Chemical Engineering 41 (2007), no. 1, 13–29. DOI10.1134/S0040579507010022
- Zelenyak T.I., On stationary solutions of mixed problems relating to the study of certain chemical processes, Differ. Equations 2 (1966), 98–102. Zbl0181.11002
- Zelenyak T.I., The stability of solutions of mixed problems for a particular quasi- linear equation, Differ. Equations 3 (1967), 9–13. Zbl0214.10002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.