C 1 -smoothness of Nemytskii operators on Sobolev-type spaces of periodic functions

Irina Kmit

Commentationes Mathematicae Universitatis Carolinae (2011)

  • Volume: 52, Issue: 4, page 507-517
  • ISSN: 0010-2628

Abstract

top
We consider a class of Nemytskii superposition operators that covers the nonlinear part of traveling wave models from laser dynamics, population dynamics, and chemical kinetics. Our main result is the C 1 -continuity property of these operators over Sobolev-type spaces of periodic functions.

How to cite

top

Kmit, Irina. "$C^1$-smoothness of Nemytskii operators on Sobolev-type spaces of periodic functions." Commentationes Mathematicae Universitatis Carolinae 52.4 (2011): 507-517. <http://eudml.org/doc/246718>.

@article{Kmit2011,
abstract = {We consider a class of Nemytskii superposition operators that covers the nonlinear part of traveling wave models from laser dynamics, population dynamics, and chemical kinetics. Our main result is the $C^1$-continuity property of these operators over Sobolev-type spaces of periodic functions.},
author = {Kmit, Irina},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Nemytskii operators; Sobolev-type spaces of periodic functions; $C^1$-smoothness; Nemytskij operator; Sobolev space; travelling wave; smoothness},
language = {eng},
number = {4},
pages = {507-517},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$C^1$-smoothness of Nemytskii operators on Sobolev-type spaces of periodic functions},
url = {http://eudml.org/doc/246718},
volume = {52},
year = {2011},
}

TY - JOUR
AU - Kmit, Irina
TI - $C^1$-smoothness of Nemytskii operators on Sobolev-type spaces of periodic functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 4
SP - 507
EP - 517
AB - We consider a class of Nemytskii superposition operators that covers the nonlinear part of traveling wave models from laser dynamics, population dynamics, and chemical kinetics. Our main result is the $C^1$-continuity property of these operators over Sobolev-type spaces of periodic functions.
LA - eng
KW - Nemytskii operators; Sobolev-type spaces of periodic functions; $C^1$-smoothness; Nemytskij operator; Sobolev space; travelling wave; smoothness
UR - http://eudml.org/doc/246718
ER -

References

top
  1. Adams R.A., Sobolev spaces, Academic Press, New York, 1975. MR0450957
  2. Akramov T.A., 10.1007/BF02732355, Siberian Math. J. 39 (1998), no. 1, 1–17. Zbl0934.35013MR1623699DOI10.1007/BF02732355
  3. Akramov T.A., Belonosov V.S., Zelenyak T.I., Lavrent'ev M.M., Jr., Slin'ko M.G., Sheplev V.S., 10.1007/BF02755974, Theoretical Foundations of Chemical Engineering 34 (2000), no. 3, 295–306. DOI10.1007/BF02755974
  4. Appell J., Zabrejko P., Nonlinear Superposition Operators, Cambridge University Press, Cambridge, UK, 1990. Zbl1156.47052MR1066204
  5. Chow S.-N., Hale J.K., 10.1007/978-1-4613-8159-4, Grundlehren der Math. Wissenschaften, 251, Springer, New York-Berlin, 1982. Zbl0487.47039MR0660633DOI10.1007/978-1-4613-8159-4
  6. Conner H.E., 10.1016/0022-0396(71)90046-5, J. Differential Equations 10 (1971), 188–203. Zbl0219.35061MR0289945DOI10.1016/0022-0396(71)90046-5
  7. Hillen T., Existence theory for correlated random walks on bounded domains, Can. Appl. Math. Q. 18 (2010), no. 1, 1–40. Zbl1201.35127MR2722831
  8. Hillen T., Hadeler K.P., Hyperbolic systems and transport equations in mathematical biology, in Analysis and Numerics for Conservation Laws, G. Warnecke, Springer, Berlin, 2005, pp. 257–279. Zbl1087.92002MR2169931
  9. Horsthemke W., 10.1103/PhysRevE.60.2651, Phys. Rev. E 60 (1999), 2651–2663. MR1710882DOI10.1103/PhysRevE.60.2651
  10. Illner R, Reed M., 10.1137/0144076, SIAM J. Appl. Math. 44 (1984), 1067–1075. Zbl0598.76092MR0766188DOI10.1137/0144076
  11. Kielhöfer H., Bifurcation Theory. An Introduction with Applications to PDEs, Appl. Math. Sciences, 156, Springer, New York-Berlin, 2004. MR2004250
  12. Kmit I., Recke L., 10.1016/j.jmaa.2007.01.055, J. Math. Anal. Appl. 335 (2007), 355–370. Zbl1160.35046MR2340326DOI10.1016/j.jmaa.2007.01.055
  13. Kmit I., Recke L., Fredholmness and smooth dependence for linear hyperbolic periodic-Dirichlet problems, J. Differential Equations(to appear). MR2853567
  14. Lichtner M., Radziunas M., Recke L., 10.1002/mma.816, Math. Methods Appl. Sci. 30 (2007), 931–960. MR2313730DOI10.1002/mma.816
  15. Lutscher F., Stevens A., 10.1007/s00332-002-0510-4, J. Nonlinear Sci. 12 (2002), no 6, 619–640. Zbl1026.35071MR1938332DOI10.1007/s00332-002-0510-4
  16. Platkowski T., Illner R., 10.1137/1030045, SIAM Review 30 (1988), 213–255. Zbl0668.76087MR0941111DOI10.1137/1030045
  17. Radziunas M., 10.1016/j.physd.2005.11.003, Phys. D 213 (2006), 575–613. Zbl1095.78006MR2186586DOI10.1016/j.physd.2005.11.003
  18. Radziunas M., Wünsche H.-J., Dynamics of multisection DFB semiconductor lasers: traveling wave and mode approximation models, in Optoelectronic Devices – Advanced Simulation and Analysis, ed. by J. Piprek, Springer, Berlin, 2005, pp. 121–150. 
  19. Slin'ko M.G., 10.1134/S0040579507010022, Theoretical Foundations of Chemical Engineering 41 (2007), no. 1, 13–29. DOI10.1134/S0040579507010022
  20. Zelenyak T.I., On stationary solutions of mixed problems relating to the study of certain chemical processes, Differ. Equations 2 (1966), 98–102. Zbl0181.11002
  21. Zelenyak T.I., The stability of solutions of mixed problems for a particular quasi- linear equation, Differ. Equations 3 (1967), 9–13. Zbl0214.10002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.