Infinitesimal CR automorphisms of hypersurfaces of finite type in
Archivum Mathematicum (2011)
- Volume: 047, Issue: 5, page 367-375
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKolář, Martin, and Meylan, Francine. "Infinitesimal CR automorphisms of hypersurfaces of finite type in ${\mathbb {C}}^2$." Archivum Mathematicum 047.5 (2011): 367-375. <http://eudml.org/doc/246738>.
@article{Kolář2011,
abstract = {We study the Chern-Moser operator for hypersurfaces of finite type in $\{\mathbb \{C\}\}^2$. Analysing its kernel, we derive explicit results on jet determination for the stability group, and give a description of infinitesimal CR automorphisms of such manifolds.},
author = {Kolář, Martin, Meylan, Francine},
journal = {Archivum Mathematicum},
keywords = {Chern-Moser operator; automorphism group; finite jet determination; finite type; Chern-Moser operator; automorphism group; finite jet determination; finite type},
language = {eng},
number = {5},
pages = {367-375},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Infinitesimal CR automorphisms of hypersurfaces of finite type in $\{\mathbb \{C\}\}^2$},
url = {http://eudml.org/doc/246738},
volume = {047},
year = {2011},
}
TY - JOUR
AU - Kolář, Martin
AU - Meylan, Francine
TI - Infinitesimal CR automorphisms of hypersurfaces of finite type in ${\mathbb {C}}^2$
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 5
SP - 367
EP - 375
AB - We study the Chern-Moser operator for hypersurfaces of finite type in ${\mathbb {C}}^2$. Analysing its kernel, we derive explicit results on jet determination for the stability group, and give a description of infinitesimal CR automorphisms of such manifolds.
LA - eng
KW - Chern-Moser operator; automorphism group; finite jet determination; finite type; Chern-Moser operator; automorphism group; finite jet determination; finite type
UR - http://eudml.org/doc/246738
ER -
References
top- Baouendi, M. S., Ebenfelt, P., Rothschild, L. P., Real Submanifolds in Complex Space and Their Mappings, Princeton Math. Ser. (1999). (1999) Zbl0944.32040MR1668103
- Chern, S. S., Moser, J., 10.1007/BF02392146, Acta Math. 133 (1974), 219–271. (1974) MR0425155DOI10.1007/BF02392146
- Ebenfelt, P., Lamel, B., Zaitsev, D., 10.1007/s00039-003-0422-y, Geom. Funct. Anal. 13 (2003), 546–573. (2003) Zbl1032.32025MR1995799DOI10.1007/s00039-003-0422-y
- Kohn, J. J., Boundary behaviour of on weakly pseudoconvex manifolds of dimension two, J. Differential Geom. 6 (1972), 523–542. (1972) MR0322365
- Kolář, M., 10.4310/MRL.2005.v12.n6.a10, Math. Res. Lett. 12 (2005), 523–542. (2005) MR2189248DOI10.4310/MRL.2005.v12.n6.a10
- Kolář, M., 10.1090/S0002-9947-10-05058-0, Trans. Amer. Math. Soc. 362 (2010), 2833–2843. (2010) MR2592937DOI10.1090/S0002-9947-10-05058-0
- Kolář, M., Meylan, F., 10.1090/conm/550/10867, Contemporary Mathematics 550 (2011), 75–87. (2011) Zbl1232.32024MR2868555DOI10.1090/conm/550/10867
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.