A smoothing SAA method for a stochastic mathematical program with complementarity constraints
Jie Zhang; Li-wei Zhang; Yue Wu
Applications of Mathematics (2012)
- Volume: 57, Issue: 5, page 477-502
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZhang, Jie, Zhang, Li-wei, and Wu, Yue. "A smoothing SAA method for a stochastic mathematical program with complementarity constraints." Applications of Mathematics 57.5 (2012): 477-502. <http://eudml.org/doc/246758>.
@article{Zhang2012,
abstract = {A smoothing sample average approximation (SAA) method based on the log-exponential function is proposed for solving a stochastic mathematical program with complementarity constraints (SMPCC) considered by Birbil et al. (S. I. Birbil, G. Gürkan, O. Listes: Solving stochastic mathematical programs with complementarity constraints using simulation, Math. Oper. Res. 31 (2006), 739–760). It is demonstrated that, under suitable conditions, the optimal solution of the smoothed SAA problem converges almost surely to that of the true problem as the sample size tends to infinity. Moreover, under a strong second-order sufficient condition for SMPCC, the almost sure convergence of Karash-Kuhn-Tucker points of the smoothed SAA problem is established by Robinson's stability theory. Some preliminary numerical results are reported to show the efficiency of our method.},
author = {Zhang, Jie, Zhang, Li-wei, Wu, Yue},
journal = {Applications of Mathematics},
keywords = {smoothing SAA method; log-exponential function; stochastic mathematical program with complementarity constraints; almost sure convergence; complementarity constraints; sample average approximation; stability analysis; complementarity constraints; sample average approximation; stability analysis; almost sure convergence},
language = {eng},
number = {5},
pages = {477-502},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A smoothing SAA method for a stochastic mathematical program with complementarity constraints},
url = {http://eudml.org/doc/246758},
volume = {57},
year = {2012},
}
TY - JOUR
AU - Zhang, Jie
AU - Zhang, Li-wei
AU - Wu, Yue
TI - A smoothing SAA method for a stochastic mathematical program with complementarity constraints
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 5
SP - 477
EP - 502
AB - A smoothing sample average approximation (SAA) method based on the log-exponential function is proposed for solving a stochastic mathematical program with complementarity constraints (SMPCC) considered by Birbil et al. (S. I. Birbil, G. Gürkan, O. Listes: Solving stochastic mathematical programs with complementarity constraints using simulation, Math. Oper. Res. 31 (2006), 739–760). It is demonstrated that, under suitable conditions, the optimal solution of the smoothed SAA problem converges almost surely to that of the true problem as the sample size tends to infinity. Moreover, under a strong second-order sufficient condition for SMPCC, the almost sure convergence of Karash-Kuhn-Tucker points of the smoothed SAA problem is established by Robinson's stability theory. Some preliminary numerical results are reported to show the efficiency of our method.
LA - eng
KW - smoothing SAA method; log-exponential function; stochastic mathematical program with complementarity constraints; almost sure convergence; complementarity constraints; sample average approximation; stability analysis; complementarity constraints; sample average approximation; stability analysis; almost sure convergence
UR - http://eudml.org/doc/246758
ER -
References
top- Birbil, S. I., Fang, S.-C., Han, J., 10.1016/S0305-0548(03)00176-X, Comput. Oper. Res. 31 (2004), 2249-2262. (2004) Zbl1074.90048MR2079391DOI10.1016/S0305-0548(03)00176-X
- Birbil, S. I., Gürkan, G., Listes, O., 10.1287/moor.1060.0215, Math. Oper. Res. 31 (2006), 739-760. (2006) Zbl1278.90278MR2281227DOI10.1287/moor.1060.0215
- Clarke, F. H., Optimization and Nonsmooth Analysis, John Wiley & Sons New York (1983). (1983) Zbl0582.49001MR0709590
- Fischer, A., 10.1080/02331939208843795, Optimization 24 (1992), 269-284. (1992) Zbl0814.65063MR1247636DOI10.1080/02331939208843795
- King, A. J., Rockafellar, R. T., 10.1007/BF01581199, Math. Program. 55 (1992), 193-212. (1992) Zbl0766.90075MR1167597DOI10.1007/BF01581199
- Linderoth, J., Shapiro, A., Wright, S., 10.1007/s10479-006-6169-8, Ann. Oper. Res. 142 (2006), 215-241. (2006) Zbl1122.90391MR2222918DOI10.1007/s10479-006-6169-8
- Li, X. S., An aggregate function method for nonlinear programming, Sci. China (Ser. A) 34 (1991), 1467-1473. (1991) Zbl0752.90069MR1167796
- Li, X. S., 10.1080/03052159208941026, J. Eng. Optim. 18 (1992), 277-185. (1992) DOI10.1080/03052159208941026
- Lin, G.-H., Chen, X., Fukushima, M., 10.1007/s10107-007-0119-3, Math. Program. 116 (2009), 343-368. (2009) Zbl1168.90008MR2421285DOI10.1007/s10107-007-0119-3
- Luo, Z.-Q., Pang, J.-S., Ralph, D., Mathematical Programs with Equilibrium Constraints, Cambridge University Press Cambridge (1997). (1997) Zbl0898.90006MR1419501
- Outrata, J. V., Mathematical programs with equilibrium constraints: Theory and numerical methods, In: Nonsmooth Mechanics of Solids. CISM Courses and Lecture Notes, vol. 485 J. Haslinger, G. E. Stavroulakis Springer New York (2006), 221-274. (2006)
- Patriksson, M., Wynter, L., 10.1016/S0167-6377(99)00052-8, Oper. Res. Lett. 25 (1999), 159-167. (1999) Zbl0937.90076MR1725965DOI10.1016/S0167-6377(99)00052-8
- Pang, J., Fukushima, M., 10.1023/A:1008656806889, Comput. Optim. Appl. 13 (1999), 111-136. (1999) Zbl1040.90560MR1704116DOI10.1023/A:1008656806889
- Peng, J., Lin, Z., 10.1007/s101070050104, Math. Program. 86 (1999), 533-563. (1999) Zbl0987.90081MR1733744DOI10.1007/s101070050104
- Plambeck, E. L., Fu, B.-R., Robinson, S. M., Suri, R., 10.1007/BF02592150, Math. Program. 75 (1996), 137-176. (1996) MR1426636DOI10.1007/BF02592150
- Qi, H., Liao, L., 10.1137/S0895479897329837, SIAM J. Matrix Anal. Appl. 21 (1999), 45-66. (1999) Zbl1017.90114MR1709725DOI10.1137/S0895479897329837
- Robinson, S. M., 10.1287/moor.5.1.43, Math. Oper. Res. 5 (1980), 43-62. (1980) Zbl0437.90094MR0561153DOI10.1287/moor.5.1.43
- Robinson, S. M., 10.1287/moor.21.3.513, Math. Oper. Res. 21 (1996), 513-528. (1996) Zbl0868.90087MR1403302DOI10.1287/moor.21.3.513
- Rockafellar, R. T., Convex Analysis, Princeton University Press Princeton (1970). (1970) Zbl0193.18401MR0274683
- Rockafellar, R. T., Wets, R. J. B., Variational Analysis, Springer Berlin (1998). (1998) Zbl0888.49001MR1491362
- Scheel, H., Scholtes, S., 10.1287/moor.25.1.1.15213, Math. Oper. Res. 25 (2000), 1-22. (2000) MR1854317DOI10.1287/moor.25.1.1.15213
- Shapiro, A., Xu, H., 10.1080/02331930801954177, Optimization 57 (2008), 395-418. (2008) Zbl1145.90047MR2412074DOI10.1080/02331930801954177
- Shapiro, A., Homem-de-Mello, T., 10.1137/S1052623498349541, SIAM J. Optim. 11 (2000), 70-86. (2000) Zbl0999.90023MR1785640DOI10.1137/S1052623498349541
- Shapiro, A., Dentcheva, D., Ruszczyński, A., Lectures on Stochastic Programming. Modeling and Theory, SIAM Philadelphia (2009). (2009) Zbl1183.90005MR2562798
- Vaart, A. van der, Wellner, J. A., Weak Convergence and Empirical Processes, Springer New York (1996). (1996) MR1385671
- Xu, H., 10.1137/040608544, SIAM J. Optim. 16 (2006), 670-696. (2006) MR2197552DOI10.1137/040608544
- Xu, H., Meng, F., 10.1287/moor.1070.0260, Math. Oper. Res. 32 (2007), 648-668. (2007) MR2348240DOI10.1287/moor.1070.0260
- Ye, J. J., Zhu, D. L., Zhu, Q. J., Exact penalization and necessary optimality conditions for generalized bilevel programming problems, SIAM J. Optim. 2 (1997), 481-507. (1997) Zbl0873.49018MR1443630
- Ye, J. J., 10.1016/j.jmaa.2004.10.032, J. Math. Anal. Appl. 307 (2005), 350-369. (2005) Zbl1112.90062MR2138995DOI10.1016/j.jmaa.2004.10.032
- Yin, H., Zhang, J., 10.1007/s00186-006-0076-2, Math. Methods Oper. Res. 64 (2006), 255-269. (2006) Zbl1132.90370MR2264784DOI10.1007/s00186-006-0076-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.