Boundedness of one-sided fractional integrals in the one-sided Calderón-Hardy spaces
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 1, page 57-75
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPerini, Alejandra. "Boundedness of one-sided fractional integrals in the one-sided Calderón-Hardy spaces." Commentationes Mathematicae Universitatis Carolinae 52.1 (2011): 57-75. <http://eudml.org/doc/246766>.
@article{Perini2011,
abstract = {In this paper we study the mapping properties of the one-sided fractional integrals in the Calderón-Hardy spaces $\mathcal \{H\}_\{q,\alpha \}^\{p,+\}(\omega )$ for $0< p\le 1$, $0< \alpha < \infty $ and $1< q< \infty $. Specifically, we show that, for suitable values of $p,q,\gamma , \alpha $ and $s$, if $\omega \in A_s^+$ (Sawyer’s classes of weights) then the one-sided fractional integral $I_\{\gamma \}^+$ can be extended to a bounded operator from $\mathcal \{H\}_\{q,\alpha \}^\{p,+\}(\omega )$ to $\mathcal \{H\}_\{q,\alpha + \gamma \}^\{p,+\}(\omega )$. The result is a consequence of the pointwise inequality \[ N\_\{q, \alpha +\gamma \}^+\left( I\_\{\gamma \}^+ F;x\right) \le C\_\{\alpha ,\gamma \} N\_\{q, \alpha \}^+ \left( F;x\right), \]
where $N_\{q, \alpha \}^+ (F;x)$ denotes the Calderón maximal function.},
author = {Perini, Alejandra},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {fractional integral; maximal; one-sided Calderón-Hardy; one-sided weights spaces; fractional integral; maximal function; Calderón-Hardy spaces; one-sided Muckenhoupt weights},
language = {eng},
number = {1},
pages = {57-75},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Boundedness of one-sided fractional integrals in the one-sided Calderón-Hardy spaces},
url = {http://eudml.org/doc/246766},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Perini, Alejandra
TI - Boundedness of one-sided fractional integrals in the one-sided Calderón-Hardy spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 1
SP - 57
EP - 75
AB - In this paper we study the mapping properties of the one-sided fractional integrals in the Calderón-Hardy spaces $\mathcal {H}_{q,\alpha }^{p,+}(\omega )$ for $0< p\le 1$, $0< \alpha < \infty $ and $1< q< \infty $. Specifically, we show that, for suitable values of $p,q,\gamma , \alpha $ and $s$, if $\omega \in A_s^+$ (Sawyer’s classes of weights) then the one-sided fractional integral $I_{\gamma }^+$ can be extended to a bounded operator from $\mathcal {H}_{q,\alpha }^{p,+}(\omega )$ to $\mathcal {H}_{q,\alpha + \gamma }^{p,+}(\omega )$. The result is a consequence of the pointwise inequality \[ N_{q, \alpha +\gamma }^+\left( I_{\gamma }^+ F;x\right) \le C_{\alpha ,\gamma } N_{q, \alpha }^+ \left( F;x\right), \]
where $N_{q, \alpha }^+ (F;x)$ denotes the Calderón maximal function.
LA - eng
KW - fractional integral; maximal; one-sided Calderón-Hardy; one-sided weights spaces; fractional integral; maximal function; Calderón-Hardy spaces; one-sided Muckenhoupt weights
UR - http://eudml.org/doc/246766
ER -
References
top- Calderón A.P., Estimates for singular integral operators in terms of maximal functions, Studia Math. 44 (1972), 563–582. MR0348555
- Gatto A., Jiménez J.G., Segovia C., On the solution of the equation for , Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. II (Chicago, 1981), Wadsworth Math. Ser., Wadworth, Belmont, CA, 1983. MR0730054
- Grafakos L., Classical and Modern Fourier Analysis, Pearson Education, Inc., Upper Saddle River, NJ, 2004. Zbl1148.42001MR2449250
- Harboure E., Salinas O., Viviani B., Acotación de la integral fraccionaria en espacios de Orlicz y de oscilación media acotada, Actas del 2do. Congreso Dr. A. Monteiro, Bahía Blanca, 1997, pp. 41–50. MR1253076
- Martín-Reyes F.J., New proof of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Proc. Amer. Math. Soc. 117 (1993), 691–698. MR1111435
- Martín-Reyes F.J., Ortega P., de la Torre A., Weighted inequalities for the one-sided maximal functions, Trans. Amer. Math. Soc. 319 (1990), 517–534. MR0986694
- Ombrosi S., On spaces associated with primitives of distributions in one-sided Hardy spaces, Rev. Un. Mat. Argentina 42 (2001), no. 2, 81–102. Zbl1196.42023MR1969626
- Ombrosi S., Sobre espacios asociados a primitivas de distribuciones en espacios de Hardy laterales, Ph.D. Thesis, Universidad Nacional de Buenos Aires, 2002.
- Ombrosi S., de Rosa L., Boundeness of the Weyl fractional integral on the one-sided weighted Lebesque and Lipchitz spaces, Publ. Mat. 47 (2003), no. 1, 71–102. MR1970895
- Ombrosi S., Segovia C., One-sided singular integral operators on Calderón-Hardy spaces, Rev. Un. Mat. Argentina 44 (2003), no. 1, 17–32. Zbl1078.42008MR2051035
- de Rosa L., Segovia C., 10.1090/conm/189/02262, Contemp. Math., 189, American Mathematical Society, Providence, RI, 1995, pp. 161–183. DOI10.1090/conm/189/02262
- Sawyer E., 10.1090/S0002-9947-1986-0849466-0, Trans. Amer. Math. Soc. 297 (1986), 53–61. Zbl0627.42009MR0849466DOI10.1090/S0002-9947-1986-0849466-0
- Stein E., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970. Zbl0281.44003MR0290095
- Zygmund A., Trigonometric Series, Cambridge University Press, Cambridge, 1959. Zbl1084.42003MR0107776
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.