Boundedness of one-sided fractional integrals in the one-sided Calderón-Hardy spaces

Alejandra Perini

Commentationes Mathematicae Universitatis Carolinae (2011)

  • Volume: 52, Issue: 1, page 57-75
  • ISSN: 0010-2628

Abstract

top
In this paper we study the mapping properties of the one-sided fractional integrals in the Calderón-Hardy spaces q , α p , + ( ω ) for 0 < p 1 , 0 < α < and 1 < q < . Specifically, we show that, for suitable values of p , q , γ , α and s , if ω A s + (Sawyer’s classes of weights) then the one-sided fractional integral I γ + can be extended to a bounded operator from q , α p , + ( ω ) to q , α + γ p , + ( ω ) . The result is a consequence of the pointwise inequality N q , α + γ + I γ + F ; x C α , γ N q , α + F ; x , where N q , α + ( F ; x ) denotes the Calderón maximal function.

How to cite

top

Perini, Alejandra. "Boundedness of one-sided fractional integrals in the one-sided Calderón-Hardy spaces." Commentationes Mathematicae Universitatis Carolinae 52.1 (2011): 57-75. <http://eudml.org/doc/246766>.

@article{Perini2011,
abstract = {In this paper we study the mapping properties of the one-sided fractional integrals in the Calderón-Hardy spaces $\mathcal \{H\}_\{q,\alpha \}^\{p,+\}(\omega )$ for $0< p\le 1$, $0< \alpha < \infty $ and $1< q< \infty $. Specifically, we show that, for suitable values of $p,q,\gamma , \alpha $ and $s$, if $\omega \in A_s^+$ (Sawyer’s classes of weights) then the one-sided fractional integral $I_\{\gamma \}^+$ can be extended to a bounded operator from $\mathcal \{H\}_\{q,\alpha \}^\{p,+\}(\omega )$ to $\mathcal \{H\}_\{q,\alpha + \gamma \}^\{p,+\}(\omega )$. The result is a consequence of the pointwise inequality \[ N\_\{q, \alpha +\gamma \}^+\left( I\_\{\gamma \}^+ F;x\right) \le C\_\{\alpha ,\gamma \} N\_\{q, \alpha \}^+ \left( F;x\right), \] where $N_\{q, \alpha \}^+ (F;x)$ denotes the Calderón maximal function.},
author = {Perini, Alejandra},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {fractional integral; maximal; one-sided Calderón-Hardy; one-sided weights spaces; fractional integral; maximal function; Calderón-Hardy spaces; one-sided Muckenhoupt weights},
language = {eng},
number = {1},
pages = {57-75},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Boundedness of one-sided fractional integrals in the one-sided Calderón-Hardy spaces},
url = {http://eudml.org/doc/246766},
volume = {52},
year = {2011},
}

TY - JOUR
AU - Perini, Alejandra
TI - Boundedness of one-sided fractional integrals in the one-sided Calderón-Hardy spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 1
SP - 57
EP - 75
AB - In this paper we study the mapping properties of the one-sided fractional integrals in the Calderón-Hardy spaces $\mathcal {H}_{q,\alpha }^{p,+}(\omega )$ for $0< p\le 1$, $0< \alpha < \infty $ and $1< q< \infty $. Specifically, we show that, for suitable values of $p,q,\gamma , \alpha $ and $s$, if $\omega \in A_s^+$ (Sawyer’s classes of weights) then the one-sided fractional integral $I_{\gamma }^+$ can be extended to a bounded operator from $\mathcal {H}_{q,\alpha }^{p,+}(\omega )$ to $\mathcal {H}_{q,\alpha + \gamma }^{p,+}(\omega )$. The result is a consequence of the pointwise inequality \[ N_{q, \alpha +\gamma }^+\left( I_{\gamma }^+ F;x\right) \le C_{\alpha ,\gamma } N_{q, \alpha }^+ \left( F;x\right), \] where $N_{q, \alpha }^+ (F;x)$ denotes the Calderón maximal function.
LA - eng
KW - fractional integral; maximal; one-sided Calderón-Hardy; one-sided weights spaces; fractional integral; maximal function; Calderón-Hardy spaces; one-sided Muckenhoupt weights
UR - http://eudml.org/doc/246766
ER -

References

top
  1. Calderón A.P., Estimates for singular integral operators in terms of maximal functions, Studia Math. 44 (1972), 563–582. MR0348555
  2. Gatto A., Jiménez J.G., Segovia C., On the solution of the equation Δ m F = f for f H p , Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. II (Chicago, 1981), Wadsworth Math. Ser., Wadworth, Belmont, CA, 1983. MR0730054
  3. Grafakos L., Classical and Modern Fourier Analysis, Pearson Education, Inc., Upper Saddle River, NJ, 2004. Zbl1148.42001MR2449250
  4. Harboure E., Salinas O., Viviani B., Acotación de la integral fraccionaria en espacios de Orlicz y de oscilación media φ acotada, Actas del 2do. Congreso Dr. A. Monteiro, Bahía Blanca, 1997, pp. 41–50. MR1253076
  5. Martín-Reyes F.J., New proof of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Proc. Amer. Math. Soc. 117 (1993), 691–698. MR1111435
  6. Martín-Reyes F.J., Ortega P., de la Torre A., Weighted inequalities for the one-sided maximal functions, Trans. Amer. Math. Soc. 319 (1990), 517–534. MR0986694
  7. Ombrosi S., On spaces associated with primitives of distributions in one-sided Hardy spaces, Rev. Un. Mat. Argentina 42 (2001), no. 2, 81–102. Zbl1196.42023MR1969626
  8. Ombrosi S., Sobre espacios asociados a primitivas de distribuciones en espacios de Hardy laterales, Ph.D. Thesis, Universidad Nacional de Buenos Aires, 2002. 
  9. Ombrosi S., de Rosa L., Boundeness of the Weyl fractional integral on the one-sided weighted Lebesque and Lipchitz spaces, Publ. Mat. 47 (2003), no. 1, 71–102. MR1970895
  10. Ombrosi S., Segovia C., One-sided singular integral operators on Calderón-Hardy spaces, Rev. Un. Mat. Argentina 44 (2003), no. 1, 17–32. Zbl1078.42008MR2051035
  11. de Rosa L., Segovia C., 10.1090/conm/189/02262, Contemp. Math., 189, American Mathematical Society, Providence, RI, 1995, pp. 161–183. DOI10.1090/conm/189/02262
  12. Sawyer E., 10.1090/S0002-9947-1986-0849466-0, Trans. Amer. Math. Soc. 297 (1986), 53–61. Zbl0627.42009MR0849466DOI10.1090/S0002-9947-1986-0849466-0
  13. Stein E., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970. Zbl0281.44003MR0290095
  14. Zygmund A., Trigonometric Series, Cambridge University Press, Cambridge, 1959. Zbl1084.42003MR0107776

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.