Second order difference inclusions of monotone type

G. Apreutesei; N. Apreutesei

Mathematica Bohemica (2012)

  • Volume: 137, Issue: 2, page 123-130
  • ISSN: 0862-7959

Abstract

top
The existence of anti-periodic solutions is studied for a second order difference inclusion associated with a maximal monotone operator in Hilbert spaces. It is the discrete analogue of a well-studied class of differential equations.

How to cite

top

Apreutesei, G., and Apreutesei, N.. "Second order difference inclusions of monotone type." Mathematica Bohemica 137.2 (2012): 123-130. <http://eudml.org/doc/246792>.

@article{Apreutesei2012,
abstract = {The existence of anti-periodic solutions is studied for a second order difference inclusion associated with a maximal monotone operator in Hilbert spaces. It is the discrete analogue of a well-studied class of differential equations.},
author = {Apreutesei, G., Apreutesei, N.},
journal = {Mathematica Bohemica},
keywords = {anti-periodic solution; maximal monotone operator; Yosida approximation; anti-periodic solution; maximal monotone operator; second-order difference inclusion; Hilbert space},
language = {eng},
number = {2},
pages = {123-130},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Second order difference inclusions of monotone type},
url = {http://eudml.org/doc/246792},
volume = {137},
year = {2012},
}

TY - JOUR
AU - Apreutesei, G.
AU - Apreutesei, N.
TI - Second order difference inclusions of monotone type
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 2
SP - 123
EP - 130
AB - The existence of anti-periodic solutions is studied for a second order difference inclusion associated with a maximal monotone operator in Hilbert spaces. It is the discrete analogue of a well-studied class of differential equations.
LA - eng
KW - anti-periodic solution; maximal monotone operator; Yosida approximation; anti-periodic solution; maximal monotone operator; second-order difference inclusion; Hilbert space
UR - http://eudml.org/doc/246792
ER -

References

top
  1. Aftabizadeh, A., Pavel, N., 10.1016/0022-247X(91)90413-T, J. Math. Anal. Appl. 156 (1991), 535-557. (1991) Zbl0734.34060MR1103028DOI10.1016/0022-247X(91)90413-T
  2. Aftabizadeh, A., Aizicovici, S., Pavel, N., 10.1016/0022-247X(92)90345-E, J. Math. Anal. Appl. 171 (1992), 301-320. (1992) Zbl0767.34047MR1194081DOI10.1016/0022-247X(92)90345-E
  3. Agarwal, R., O'Regan, D., Lakshmikantham, V., 10.1080/1023619031000097044, J. Difference Equ. Appl. 9 (2003), 879-885. (2003) Zbl1047.39013MR1996340DOI10.1080/1023619031000097044
  4. Aizicovici, S., Pavel, N., 10.1016/0022-1236(91)90046-8, J. Funct. Anal. 99 (1991), 387-408. (1991) MR1121619DOI10.1016/0022-1236(91)90046-8
  5. Aizicovici, S., Reich, S., Anti-periodic solutions to difference inclusions in Banach spaces, Dyn. Syst. Appl. 1 (1992), 121-130. (1992) Zbl0756.39001MR1171125
  6. Apreutesei, G., Apreutesei, N., 10.1080/10236190802192975, J. Difference Equ. Appl. 15 (2009), 511-527. (2009) Zbl1176.39003MR2523089DOI10.1080/10236190802192975
  7. Apreutesei, N., 10.1016/j.jmaa.2003.09.017, J. Math. Anal. Appl. 288 (2003), 833-851. (2003) Zbl1040.39002MR2020200DOI10.1016/j.jmaa.2003.09.017
  8. Apreutesei, N., Nonlinear Second Order Evolution Equations of Monotone Type and Applications, Pushpa Publishing House, India (2007). (2007) Zbl1152.34001MR2419289
  9. Barbu, V., A class of boundary problems for second order abstract differential equations, J. Fac. Sci. Univ. Tokyo, Sect. I A 19 (1972), 295-319. (1972) Zbl0256.47052MR0331133
  10. Rouhani, B. Djafari, Khatibzadeh, H., Asymptotic behavior of bounded solutions to a class of second order nonhomogeneous evolution equations, Nonlinear Anal., Theory Methods Appl. 70 (2009), 4369-4376. (2009) MR2514767
  11. Stehlík, P., Tisdell, C. C., On boundary value problems for second-order discrete inclusions, Bound. Value Probl. 2005 (2005), 153-164. (2005) Zbl1146.39031MR2198748

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.