Some remarks on two-scale convergence and periodic unfolding
Jan Franců; Nils E M Svanstedt
Applications of Mathematics (2012)
- Volume: 57, Issue: 4, page 359-375
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFranců, Jan, and Svanstedt, Nils E M. "Some remarks on two-scale convergence and periodic unfolding." Applications of Mathematics 57.4 (2012): 359-375. <http://eudml.org/doc/246815>.
@article{Franců2012,
abstract = {The paper discusses some aspects of the adjoint definition of two-scale convergence based on periodic unfolding. As is known this approach removes problems concerning choice of the appropriate space for admissible test functions. The paper proposes a modified unfolding which conserves integral of the unfolded function and hence simplifies the proofs and its application in homogenization theory. The article provides also a self-contained introduction to two-scale convergence and gives ideas for generalization to non-periodic homogenization.},
author = {Franců, Jan, Svanstedt, Nils E M},
journal = {Applications of Mathematics},
keywords = {two-scale convergence; unfolding; homogenization; two-scale convergence; unfolding; homogenization},
language = {eng},
number = {4},
pages = {359-375},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some remarks on two-scale convergence and periodic unfolding},
url = {http://eudml.org/doc/246815},
volume = {57},
year = {2012},
}
TY - JOUR
AU - Franců, Jan
AU - Svanstedt, Nils E M
TI - Some remarks on two-scale convergence and periodic unfolding
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 4
SP - 359
EP - 375
AB - The paper discusses some aspects of the adjoint definition of two-scale convergence based on periodic unfolding. As is known this approach removes problems concerning choice of the appropriate space for admissible test functions. The paper proposes a modified unfolding which conserves integral of the unfolded function and hence simplifies the proofs and its application in homogenization theory. The article provides also a self-contained introduction to two-scale convergence and gives ideas for generalization to non-periodic homogenization.
LA - eng
KW - two-scale convergence; unfolding; homogenization; two-scale convergence; unfolding; homogenization
UR - http://eudml.org/doc/246815
ER -
References
top- Allaire, G., 10.1137/0523084, SIAM J. Math. Anal. 23 (1992), 1482-1518. (1992) Zbl0770.35005MR1185639DOI10.1137/0523084
- Arbogast, T., Douglas, J., Hornung, U., 10.1137/0521046, SIAM J. Math. Anal. 21 (1990), 823-836. (1990) Zbl0698.76106MR1052874DOI10.1137/0521046
- Bensoussan, A., Lions, J. L., Papanicolaou, G., Asymptotic Analysis for Periodic Structures, North-Holland Amsterdam (1978). (1978) Zbl0404.35001MR0503330
- Bourgeat, A., Mikelić, A., Wright, S., Stochastic two-scale convergence in the mean and applications, J. Reine Angew. Math. 456 (1994), 19-51. (1994) Zbl0808.60056MR1301450
- Casado-Díaz, J., 10.1017/S0308210500000147, Proc. R. Soc. Edinb., Sect. A 130 (2000), 249-276. (2000) MR1750830DOI10.1017/S0308210500000147
- Cioranescu, D., Damlamian, A., Griso, G., 10.1016/S1631-073X(02)02429-9, C. R. Math. Acad. Sci. Paris 335 (2002), 99-104. (2002) Zbl1001.49016MR1921004DOI10.1016/S1631-073X(02)02429-9
- Cioranescu, D., Damlamian, A., Griso, G., 10.1137/080713148, SIAM J. Math. Anal. 40 (2008), 1585-1620. (2008) Zbl1167.49013MR2466168DOI10.1137/080713148
- Damlamian, A., An elementary introduction to periodic unfolding, In: Proceedings of the Narvik Conference 2004, GAKUTO International Series, Math. Sci. Appl. 24 Gakkotosho Tokyo (2006), 119-136. (2006) Zbl1204.35038MR2233174
- Ekeland, I., Temam, R., Convex analysis and variational problems, North-Holland Amsterdam (1976). (1976) Zbl0322.90046MR0463994
- Franců, J., On two-scale convergence, In: Proceeding of the 6th Mathematical Workshop, Faculty of Civil Engineering, Brno University of Technology, Brno, October 18, 2007, CD, 7 pages.
- Franců, J., Modification of unfolding approach to two-scale convergence, Math. Bohem. 135 (2010), 403-412. (2010) Zbl1224.35020MR2681014
- Holmbom, A., Silfver, J., Svanstedt, N., Wellander, N., 10.1007/s10492-006-0014-x, Appl. Math. 51 (2006), 247-262. (2006) Zbl1164.40304MR2228665DOI10.1007/s10492-006-0014-x
- Lukkassen, D., Nguetseng, G., Wall, P., Two-scale convergence, Int. J. Pure Appl. Math. 2 (2002), 35-86. (2002) Zbl1061.35015MR1912819
- Murat, F., Compacité par compensation, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 5 (1978), 489-507 French. (1978) Zbl0399.46022MR0506997
- Nechvátal, L., 10.1023/B:APOM.0000027218.04167.9b, Appl. Math. 49 (2004), 97-110. (2004) Zbl1099.35012MR2043076DOI10.1023/B:APOM.0000027218.04167.9b
- Nguetseng, G., 10.1137/0520043, SIAM J. Math. Anal. 20 (1989), 608-623. (1989) Zbl0688.35007MR0990867DOI10.1137/0520043
- Nguetseng, G., Svanstedt, N., -convergence, Banach J. Math. Anal. 2 (2011), 101-135 Open electronic access: www.emis.de/journals/BJMA/. (2011) Zbl1229.46035MR2738525
- Silfver, J., 10.1007/s10492-007-0015-4, Appl. Math. 52 (2007), 285-302. (2007) Zbl1164.35318MR2324728DOI10.1007/s10492-007-0015-4
- Silfver, J., Homogenization, PhD. Thesis Mid-Sweden University (2007). (2007)
- Zhikov, V. V., Krivenko, E. V., Homogenization of singularly perturbed elliptic operators, Matem. Zametki 33 (1983), 571-582 (Engl. transl.: Math. Notes (1983), 294-300). (1983) MR0704444
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.