Uncountably many solutions of a system of third order nonlinear differential equations

Min Liu

Commentationes Mathematicae Universitatis Carolinae (2011)

  • Volume: 52, Issue: 3, page 369-389
  • ISSN: 0010-2628

Abstract

top
In this paper, we aim to study the global solvability of the following system of third order nonlinear neutral delay differential equations d d t r i ( t ) d d t λ i ( t ) d d t x i ( t ) - f i ( t , x 1 ( t - σ i 1 ) , x 2 ( t - σ i 2 ) , x 3 ( t - σ i 3 ) ) + d d t r i ( t ) d d t g i ( t , x 1 ( p i 1 ( t ) ) , x 2 ( p i 2 ( t ) ) , x 3 ( p i 3 ( t ) ) ) + d d t h i ( t , x 1 ( q i 1 ( t ) ) , x 2 ( q i 2 ( t ) ) , x 3 ( q i 3 ( t ) ) ) = l i ( t , x 1 ( η i 1 ( t ) ) , x 2 ( η i 2 ( t ) ) , x 3 ( η i 3 ( t ) ) ) , t t 0 , i { 1 , 2 , 3 } in the following bounded closed and convex set Ω ( a , b ) = x ( t ) = ( x 1 ( t ) , x 2 ( t ) , x 3 ( t ) ) C ( [ t 0 , + ) , 3 ) : a ( t ) x i ( t ) b ( t ) , t t 0 , i { 1 , 2 , 3 } , where σ i j > 0 , r i , λ i , a , b C ( [ t 0 , + ) , + ) , f i , g i , h i , l i C ( [ t 0 , + ) × 3 , ) , p i j , q i j , η i j C ( [ t 0 , + ) , ) for i , j { 1 , 2 , 3 } . By applying the Krasnoselskii fixed point theorem, the Schauder fixed point theorem, the Sadovskii fixed point theorem and the Banach contraction principle, four existence results of uncountably many bounded positive solutions of the system are established.

How to cite

top

Liu, Min. "Uncountably many solutions of a system of third order nonlinear differential equations." Commentationes Mathematicae Universitatis Carolinae 52.3 (2011): 369-389. <http://eudml.org/doc/246859>.

@article{Liu2011,
abstract = {In this paper, we aim to study the global solvability of the following system of third order nonlinear neutral delay differential equations \[ \aligned & \frac\{d\}\{dt\}\Big \lbrace r\_i(t)\frac\{d\}\{dt\}\Big [\lambda \_i(t)\frac\{d\}\{dt\} \Big (x\_i(t)-f\_i(t,x\_1(t-\sigma \_\{i1\}),x\_2(t-\sigma \_\{i2\}), x\_3(t-\sigma \_\{i3\}))\Big )\Big ]\Big \rbrace \cr & \qquad \quad + \frac\{d\}\{dt\}\Big [r\_i(t)\frac\{d\}\{dt\}g\_i(t,x\_1(p\_\{i1\}(t)), x\_2(p\_\{i2\}(t)),x\_3(p\_\{i3\}(t)))\Big ] \cr & \qquad \quad + \frac\{d\}\{dt\}h\_i(t,x\_1(q\_\{i1\}(t)),x\_2(q\_\{i2\}(t)), x\_3(q\_\{i3\}(t))) \cr & = l\_i(t,x\_1(\eta \_\{i1\}(t)),x\_2(\eta \_\{i2\}(t)),x\_3(\eta \_\{i3\}(t))), \quad t\ge t\_0,\quad i\in \lbrace 1,2,3\rbrace \endaligned \] in the following bounded closed and convex set \[ \aligned \Omega (a,b)=\Big \lbrace x(t)=\big (x\_1(t),x\_2(t),x\_3(t)\big )\in C([t\_0,+\infty ),\mathbb \{R\}^3):a(t)\le x\_i(t)\le b(t), \qquad \forall \, t\ge t\_0, i\in \lbrace 1,2,3\rbrace \Big \rbrace , \qquad \endaligned \] where $\sigma _\{ij\}>0$, $r_i,\lambda _i,a,b\in C([t_0,+\infty ),\mathbb \{R\}^\{+\})$, $f_i,g_i,h_i,l_i\in C([t_0,+\infty )\times \mathbb \{R\}^3,\mathbb \{R\})$, $p_\{ij\},q_\{ij\},\eta _\{ij\}\in C([t_0,+\infty ),\mathbb \{R\})$ for $i,j\in \lbrace 1,2,3\rbrace $. By applying the Krasnoselskii fixed point theorem, the Schauder fixed point theorem, the Sadovskii fixed point theorem and the Banach contraction principle, four existence results of uncountably many bounded positive solutions of the system are established.},
author = {Liu, Min},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {system of third order nonlinear neutral delay differential equations; contraction mapping; completely continuous mapping; condensing mapping; uncountably many bounded positive solutions; neutral delay differential equation; third order nonlinear system; positive solution; contraction mapping; condensing mapping},
language = {eng},
number = {3},
pages = {369-389},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Uncountably many solutions of a system of third order nonlinear differential equations},
url = {http://eudml.org/doc/246859},
volume = {52},
year = {2011},
}

TY - JOUR
AU - Liu, Min
TI - Uncountably many solutions of a system of third order nonlinear differential equations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 3
SP - 369
EP - 389
AB - In this paper, we aim to study the global solvability of the following system of third order nonlinear neutral delay differential equations \[ \aligned & \frac{d}{dt}\Big \lbrace r_i(t)\frac{d}{dt}\Big [\lambda _i(t)\frac{d}{dt} \Big (x_i(t)-f_i(t,x_1(t-\sigma _{i1}),x_2(t-\sigma _{i2}), x_3(t-\sigma _{i3}))\Big )\Big ]\Big \rbrace \cr & \qquad \quad + \frac{d}{dt}\Big [r_i(t)\frac{d}{dt}g_i(t,x_1(p_{i1}(t)), x_2(p_{i2}(t)),x_3(p_{i3}(t)))\Big ] \cr & \qquad \quad + \frac{d}{dt}h_i(t,x_1(q_{i1}(t)),x_2(q_{i2}(t)), x_3(q_{i3}(t))) \cr & = l_i(t,x_1(\eta _{i1}(t)),x_2(\eta _{i2}(t)),x_3(\eta _{i3}(t))), \quad t\ge t_0,\quad i\in \lbrace 1,2,3\rbrace \endaligned \] in the following bounded closed and convex set \[ \aligned \Omega (a,b)=\Big \lbrace x(t)=\big (x_1(t),x_2(t),x_3(t)\big )\in C([t_0,+\infty ),\mathbb {R}^3):a(t)\le x_i(t)\le b(t), \qquad \forall \, t\ge t_0, i\in \lbrace 1,2,3\rbrace \Big \rbrace , \qquad \endaligned \] where $\sigma _{ij}>0$, $r_i,\lambda _i,a,b\in C([t_0,+\infty ),\mathbb {R}^{+})$, $f_i,g_i,h_i,l_i\in C([t_0,+\infty )\times \mathbb {R}^3,\mathbb {R})$, $p_{ij},q_{ij},\eta _{ij}\in C([t_0,+\infty ),\mathbb {R})$ for $i,j\in \lbrace 1,2,3\rbrace $. By applying the Krasnoselskii fixed point theorem, the Schauder fixed point theorem, the Sadovskii fixed point theorem and the Banach contraction principle, four existence results of uncountably many bounded positive solutions of the system are established.
LA - eng
KW - system of third order nonlinear neutral delay differential equations; contraction mapping; completely continuous mapping; condensing mapping; uncountably many bounded positive solutions; neutral delay differential equation; third order nonlinear system; positive solution; contraction mapping; condensing mapping
UR - http://eudml.org/doc/246859
ER -

References

top
  1. Agarwal R.P., O'Regan D., Saker S.H., 10.1016/j.jmaa.2004.06.041, J. Math. Anal. Appl. 300 (2004), 203–217. (2004) Zbl1062.34068MR2100247DOI10.1016/j.jmaa.2004.06.041
  2. Erbe L.H., Kong W.K., Zhang B.G., Oscillatory Theory for Functional Differential Equations, Marcel Dekker, New York, 1995. 
  3. El-Metwally H., Kulenovic M.R.S., Hadziomerspahic S., 10.1016/S0362-546X(03)00044-0, Nonlinear Anal. 54 (2003), 63–81. (2003) Zbl1029.34057MR1978965DOI10.1016/S0362-546X(03)00044-0
  4. Hanuštiaková L'., Olach R., 10.1016/j.na.2007.01.014, Nonlinear Anal. 68 (2008), 1816–1824. (2008) Zbl1147.34350MR2388896DOI10.1016/j.na.2007.01.014
  5. Islam M.N., Raffoul Y.N., 10.1016/j.jmaa.2006.09.030, J. Math. Anal. Appl. 331 (2007), 1175–1186. (2007) Zbl1118.34057MR2313707DOI10.1016/j.jmaa.2006.09.030
  6. Levitan B.M., Some problems of the theory of almost periodic functions I, Uspekhi Mat. Nauk 2(5) (1947), 133–192. (1947) MR0027358
  7. Liu Z., Gao H.Y., Kang S.M., Shim S.H., 10.1016/j.jmaa.2006.06.079, J. Math. Anal. Appl. 329 (2007), 515–529. (2007) Zbl1116.34051MR2306819DOI10.1016/j.jmaa.2006.06.079
  8. Lin X.Y., 10.1016/j.jmaa.2004.08.023, J. Math. Anal. Appl. 309 (2005), 442–452. (2005) MR2154127DOI10.1016/j.jmaa.2004.08.023
  9. Parhi N., Rath R.N., 10.1006/jmaa.2000.7315, J. Math. Anal. Appl. 256 (2001), 525–541. (2001) MR1821755DOI10.1006/jmaa.2000.7315
  10. Sadovskii B.N., 10.1007/BF01076087, Funct. Anal. Appl. 1 (1967), 151–153. (1967) MR0211302DOI10.1007/BF01076087
  11. Yu Y., Wang H., 10.1016/j.jmaa.2005.02.055, J. Math. Anal. Appl. 311 (2005), 445–456. (2005) Zbl1089.34053MR2168408DOI10.1016/j.jmaa.2005.02.055
  12. Zhou Y., 10.1016/j.jmaa.2006.08.048, J. Math. Anal. Appl. 331 (2007), 91–96. (2007) Zbl1111.34049MR2305990DOI10.1016/j.jmaa.2006.08.048
  13. Zhang W.P., Feng W., Yan J.R., Song J.S., Existence of nonoscillatory solutions of first-order linear neutral delay differential equations, Compu. Math. Appl. 49 (2005), 1021–1027. (2005) Zbl1087.34539MR2141246
  14. Zhou Y., Zhang B.G., 10.1016/S0893-9659(02)00055-1, Appl. Math. Lett. 15 (2002), 867–874. (2002) Zbl1025.34065MR1920988DOI10.1016/S0893-9659(02)00055-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.