An extragradient approximation method for variational inequality problem on fixed point problem of nonexpensive mappings and monotone mappings
Alongkot Suvarnamani; Mongkol Tatong
Archivum Mathematicum (2012)
- Volume: 048, Issue: 1, page 45-59
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topSuvarnamani, Alongkot, and Tatong, Mongkol. "An extragradient approximation method for variational inequality problem on fixed point problem of nonexpensive mappings and monotone mappings." Archivum Mathematicum 048.1 (2012): 45-59. <http://eudml.org/doc/246866>.
@article{Suvarnamani2012,
abstract = {We introduce an iterative sequence for finding the common element of the set of fixed points of a nonexpansive mapping and the solutions of the variational inequality problem for tree inverse-strongly monotone mappings. Under suitable conditions, some strong convergence theorems for approximating a common element of the above two sets are obtained. Moreover, using the above theorem, we also apply to finding solutions of a general system of variational inequality and a zero of a maximal monotone operator in a real Hilbert space. As applications, at the end of paper we utilize our results to study the zeros of the maximal monotone and some convergence problem for strictly pseudocontractive mappings. Our results include the previous results as special cases extend and improve the results of Ceng et al., [Math. Meth. Oper. Res., 67:375–390, 2008] and many others.},
author = {Suvarnamani, Alongkot, Tatong, Mongkol},
journal = {Archivum Mathematicum},
keywords = {nonexpansive mapping; fixed point problems; Variational inequality; relaxed extragradient approximation method; maximal monotone; nonexpansive mapping; fixed point problem; variational inequality; relaxed extragradient approximation method},
language = {eng},
number = {1},
pages = {45-59},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {An extragradient approximation method for variational inequality problem on fixed point problem of nonexpensive mappings and monotone mappings},
url = {http://eudml.org/doc/246866},
volume = {048},
year = {2012},
}
TY - JOUR
AU - Suvarnamani, Alongkot
AU - Tatong, Mongkol
TI - An extragradient approximation method for variational inequality problem on fixed point problem of nonexpensive mappings and monotone mappings
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 1
SP - 45
EP - 59
AB - We introduce an iterative sequence for finding the common element of the set of fixed points of a nonexpansive mapping and the solutions of the variational inequality problem for tree inverse-strongly monotone mappings. Under suitable conditions, some strong convergence theorems for approximating a common element of the above two sets are obtained. Moreover, using the above theorem, we also apply to finding solutions of a general system of variational inequality and a zero of a maximal monotone operator in a real Hilbert space. As applications, at the end of paper we utilize our results to study the zeros of the maximal monotone and some convergence problem for strictly pseudocontractive mappings. Our results include the previous results as special cases extend and improve the results of Ceng et al., [Math. Meth. Oper. Res., 67:375–390, 2008] and many others.
LA - eng
KW - nonexpansive mapping; fixed point problems; Variational inequality; relaxed extragradient approximation method; maximal monotone; nonexpansive mapping; fixed point problem; variational inequality; relaxed extragradient approximation method
UR - http://eudml.org/doc/246866
ER -
References
top- Blum, E., Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123–145. (1994) Zbl0888.49007MR1292380
- Browder, F. E., Petryshyn, W. V., 10.1016/0022-247X(67)90085-6, J. Math. Anal. Appl. 20 (1967), 197–228. (1967) MR0217658DOI10.1016/0022-247X(67)90085-6
- Ceng, L.–C., Wang, C.–Y., Yao, J.–C., 10.1007/s00186-007-0207-4, Math. Methods Oper. Res. 67 (2008), 375–390. (2008) Zbl1147.49007MR2403714DOI10.1007/s00186-007-0207-4
- Combettes, P. L., Hirstoaga, S. A., Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (1) (2005), 117–136. (2005) Zbl1109.90079MR2138105
- Goebel, K., Kirk, W. A., Topics on Metric Fixed–Point Theory, Cambridge University Press, 1990. (1990) MR1074005
- Haugazeau, Y., Surles in équations variationnelles et la minimisation de fonctionnelles convexes, Thèse, Master's thesis, Université de Paris, 1968. (1968)
- Korpelevich, G. M., An extragradient method for finding saddle points and for other problems, Ékonom. i Mat. Metody 12 (940) (1976), 747–756, Russian. (1976) MR0451121
- Kumam, P., Strong convergence theorems by an extragradient method for solving variational inequalities and equilibrium problems in a Hilbert space, Turkish J. Math. 33 (1) (2009), 85–98. (2009) Zbl1223.47083MR2524118
- Liu, F., Nashed, M. Z., Takahashi, W., Regularization of nonlinear ill–posed variational inequalities and convergence rates, Set–Valued Anal. 6 (1998), 313–344. (1998) MR1690160
- Nadezhkina, N., Takahashi, W., 10.1007/s10957-005-7564-z, J. Optim. Theory Appl. 128 (2006), 191–201. (2006) Zbl1130.90055MR2201895DOI10.1007/s10957-005-7564-z
- Osilike, M. O., Igbokwe, D. I., 10.1016/S0898-1221(00)00179-6, Comput. Math. Appl. 40 (2000), 559–567. (2000) Zbl0958.47030MR1772655DOI10.1016/S0898-1221(00)00179-6
- Plubtieng, S., Punpaeng, R., 10.1016/j.amc.2007.07.075, Appl. Math. Comput. (2007). (2007) DOI10.1016/j.amc.2007.07.075
- Su, Y. et al.,, 10.1016/j.na.2007.08.045, Nonlinear Anal. (2007). (2007) DOI10.1016/j.na.2007.08.045
- Suzuki, T., 10.1016/j.jmaa.2004.11.017, J. Math. Anal. Appl. 305 (2005), 227–239. (2005) Zbl1068.47085MR2128124DOI10.1016/j.jmaa.2004.11.017
- Takahashi, S., Takahashi, W., 10.1016/j.jmaa.2006.08.036, J. Math. Anal. Appl. 331 (1) (2007), 506–515. (2007) Zbl1122.47056MR2306020DOI10.1016/j.jmaa.2006.08.036
- Takahashi, W., Toyoda, M., 10.1023/A:1025407607560, J. Optim. Theory Appl. 118 (2003), 417–428. (2003) Zbl1055.47052MR2006529DOI10.1023/A:1025407607560
- Verma, R. U., On a new system of nonlinear variational inequalities and associated iterative algorithms, Math. Sci. Res. Hot–Line 3 (8) (1999), 65–68. (1999) Zbl0970.49011MR1717779
- Verma, R. U., Iterative algorithms and a new system of nonlinear quasivariational inequalities, Adv. Nonlinear Var. Inequal. 4 (1) (2001), 117–127. (2001) Zbl1014.47050MR1801652
- Xu, H. K., 10.1016/j.jmaa.2004.04.059, J. Math. Anal. Appl. 298 (2004), 279–291. (2004) Zbl1061.47060MR2086546DOI10.1016/j.jmaa.2004.04.059
- Yao, J–C., Chadli, O., Handbook of Generalized Convexity and Monotonicity, ch. Pseudomonotone complementarity problems and variational inequalities, pp. 501–558, Springer, Netherlands, 2005. (2005) MR2098908
- Yao, Y., C., Liou Y., Yao, J.–C., 10.1155/2007/38752, Journal of Inequalities and Applications 2007 (2007), 12, article ID 38752. (2007) Zbl1137.47057MR2291644DOI10.1155/2007/38752
- Yao, Y., Yao, J.–C., 10.1016/j.amc.2006.08.062, Appl. Math. Comput. 186 (2007), 1551–1558. (2007) Zbl1121.65064MR2316950DOI10.1016/j.amc.2006.08.062
- Zeng, L. C., Wong, N. C., Yao, J.–C., Strong convergence theorems for strictly pseudocontractive mapping of Browder–Petryshyn type, Taiwanese J. Math. 10 (4) (2006), 837–849. (2006) MR2229625
- Zeng, L. C., Yao, J.–C., Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwanese J. Math. 10 (2006), 1293–1303. (2006) Zbl1110.49013MR2253379
- Zhang, S., Lee, J., Chan, C., 10.1007/s10483-008-0502-y, Appl. Math. Mech. (English Ed.) 29 (5) (2008), 571–581. (2008) Zbl1196.47047MR2414681DOI10.1007/s10483-008-0502-y
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.