Interior regularity of weak solutions to the perturbed Navier-Stokes equations
Applications of Mathematics (2012)
- Volume: 57, Issue: 5, page 427-444
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHan, Pigong. "Interior regularity of weak solutions to the perturbed Navier-Stokes equations." Applications of Mathematics 57.5 (2012): 427-444. <http://eudml.org/doc/246868>.
@article{Han2012,
abstract = {In this paper we establish interior regularity for weak solutions and partial regularity for suitable weak solutions of the perturbed Navier-Stokes system, which can be regarded as generalizations of the results in L. Caffarelli, R. Kohn, L. Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commun. Pure. Appl. Math. 35 (1982), 771–831, and S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscr. Math. 69 (1990), 237–254.},
author = {Han, Pigong},
journal = {Applications of Mathematics},
keywords = {perturbed Navier-Stokes equations; interior regularity; partial regularity; perturbed Navier-Stokes equation; interior regularity; partial regularity},
language = {eng},
number = {5},
pages = {427-444},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Interior regularity of weak solutions to the perturbed Navier-Stokes equations},
url = {http://eudml.org/doc/246868},
volume = {57},
year = {2012},
}
TY - JOUR
AU - Han, Pigong
TI - Interior regularity of weak solutions to the perturbed Navier-Stokes equations
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 5
SP - 427
EP - 444
AB - In this paper we establish interior regularity for weak solutions and partial regularity for suitable weak solutions of the perturbed Navier-Stokes system, which can be regarded as generalizations of the results in L. Caffarelli, R. Kohn, L. Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commun. Pure. Appl. Math. 35 (1982), 771–831, and S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscr. Math. 69 (1990), 237–254.
LA - eng
KW - perturbed Navier-Stokes equations; interior regularity; partial regularity; perturbed Navier-Stokes equation; interior regularity; partial regularity
UR - http://eudml.org/doc/246868
ER -
References
top- Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge University Press Cambridge (1967). (1967) Zbl0152.44402MR1744638
- Bae, H.-O., Choe, H. J., 10.1080/03605300701257500, Commun. Partial. Differ. Equations 32 (2007), 1173-1187. (2007) Zbl1220.35111MR2354489DOI10.1080/03605300701257500
- Veiga, H. Beirao da, 10.1007/PL00000955, J. Math. Fluid Mech. 2 (2000), 315-323. (2000) MR1814220DOI10.1007/PL00000955
- Veiga, H. Beirao da, A new regularity class for the Navier-Stokes equations in , Chin. Ann. Math., Ser. B 16 (1995), 407-412. (1995) MR1380578
- Veiga, H. Beirao da, 10.1007/PL00000949, J. Math. Fluid Mech. 2 (2000), 99-106. (2000) MR1765772DOI10.1007/PL00000949
- Berselli, L. C., Galdi, G. P., 10.1090/S0002-9939-02-06697-2, Proc. Am. Math. Soc. 130 (2002), 3585-3595. (2002) MR1920038DOI10.1090/S0002-9939-02-06697-2
- Caffarelli, L., Kohn, R., Nirenberg, L., 10.1002/cpa.3160350604, Commun. Pure Appl. Math. 35 (1982), 771-831. (1982) Zbl0509.35067MR0673830DOI10.1002/cpa.3160350604
- Cao, C., Titi, E., 10.1512/iumj.2008.57.3719, Indiana Univ. Math. J. 57 (2008), 2643-2661. (2008) Zbl1159.35053MR2482994DOI10.1512/iumj.2008.57.3719
- Chae, D., Choe, H.-J., Regularity of solutions to the Navier-Stokes equation, Electron. J. Differ. Equ. 5 (1999), 1-7. (1999) Zbl0923.35117MR1673067
- Chae, D., Lee, J., 10.1016/S0362-546X(00)00163-2, Nonlinear Anal., Theory Methods Appl. 46 (2001), 727-735. (2001) Zbl1007.35064MR1857154DOI10.1016/S0362-546X(00)00163-2
- Chester, W., A general theory for the motion of a body through a fluid at low Reynolds number, Proc. R. Soc. Lond., Ser. A 430 (1990), 89-104. (1990) Zbl0703.76026MR1068486
- Chen, Z., Miyakawa, T., Decay properties of weak solutions to a perturbed Navier-Stokes system in , Adv. Math. Sci. Appl. 7 (1997), 741-770. (1997) MR1476275
- Farwig, R., Komo, C., 10.1007/s00030-010-0055-4, NoDEA, Nonlinear Differ. Equ. Appl. 17 (2010), 303-321. (2010) Zbl1189.76115MR2652230DOI10.1007/s00030-010-0055-4
- Farwig, R., Kozono, H., Sohr, H., 10.1512/iumj.2007.56.3098, Indiana Univ. Math. J. 56 (2007), 2111-2132. (2007) Zbl1175.35100MR2359725DOI10.1512/iumj.2007.56.3098
- Han, P., 10.1007/s00028-009-0045-3, J. Evol. Equ. 10 (2010), 195-204. (2010) Zbl1239.35110MR2602932DOI10.1007/s00028-009-0045-3
- He, C., Regularity for solutions to the Navier-Stokes equations with one velocity component regular, Electron J. Differ. Equ. 29 (2002), 1-13. (2002) Zbl0993.35072MR1907705
- Hishida, T., 10.1007/s002050050190, Arch. Ration. Mech. Anal. 150 (1999), 307-348. (1999) Zbl0949.35106MR1741259DOI10.1007/s002050050190
- Iskauriaza, L., Seregin, G., Shverak, V., -solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk. 58 (2003), 3-44 Russian; translation in Russ. Math. Surv. 58 (2003), 211-250. (2003) MR1992563
- Ladyzhenskaya, O., Seregin, G. A., 10.1007/s000210050015, J. Math. Fluid Mech. 1 (1999), 356-387. (1999) Zbl0954.35129MR1738171DOI10.1007/s000210050015
- Lin, F., 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A, Commun. Pure Appl. Math. 51 (1998), 241-257. (1998) Zbl0958.35102MR1488514DOI10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
- Masuda, K., 10.2748/tmj/1178228767, Tôhoku Math. J., II. Ser. 36 (1984), 623-646. (1984) MR0767409DOI10.2748/tmj/1178228767
- Neustupa, J., Novotný, A., Penel, P., An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, Quaderni di Matematica, Vol. 10: Topics in Mathematical Fluid Mechanics G. P. Galdi, R. Rannacher (2003), 168-183 20517774. (2003) MR2051774
- Neustupa, J., Penel, P., Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component, Applied Nonlinear Anal. A. Sequeira et al. Kluwer Academic/Plenum Publishers New York (1999), 391-402. (1999) Zbl0953.35113MR1727461
- Penel, P., Pokorný, M., 10.1023/B:APOM.0000048124.64244.7e, Appl. Math. 49 (2004), 483-493. (2004) Zbl1099.35101MR2086090DOI10.1023/B:APOM.0000048124.64244.7e
- Scheffer, V., 10.2140/pjm.1976.66.535, Pac. J. Math. 66 (1976), 535-552. (1976) Zbl0325.35064MR0454426DOI10.2140/pjm.1976.66.535
- Seregin, G., 10.1007/s00021-005-0190-6, J. Math. Fluid Mech. 9 (2007), 34-43. (2007) Zbl1128.35085MR2305824DOI10.1007/s00021-005-0190-6
- Serrin, J., 10.1007/BF00253344, Arch. Ration. Mech. Anal. 9 (1962), 187-195. (1962) Zbl0106.18302MR0136885DOI10.1007/BF00253344
- Solonnikov, V. A., Estimates of the solutions of a nonstationary linearized system of Navier-Stokes equations, Am. Math. Soc., Transl., II. Sér. 75 (1968), 1-116. (1968) Zbl0187.03402
- Struwe, M., 10.1002/cpa.3160410404, Commun. Pure Appl. Math. 41 (1988), 437-458. (1988) Zbl0632.76034MR0933230DOI10.1002/cpa.3160410404
- Takahashi, S., 10.1007/BF02567922, Manuscr. Math. 69 (1990), 237-254. (1990) Zbl0718.35022MR1078355DOI10.1007/BF02567922
- Zhou, Y., 10.1007/s00208-003-0478-x, Math. Ann. 328 (2004), 173-192. (2004) Zbl1054.35062MR2030374DOI10.1007/s00208-003-0478-x
- Zhou, Y., 10.1016/j.matpur.2005.07.003, J. Math. Pures Appl., IX. Sér. 84 (2005), 1496-1514. (2005) Zbl1092.35081MR2181458DOI10.1016/j.matpur.2005.07.003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.