Interior regularity of weak solutions to the perturbed Navier-Stokes equations

Pigong Han

Applications of Mathematics (2012)

  • Volume: 57, Issue: 5, page 427-444
  • ISSN: 0862-7940

Abstract

top
In this paper we establish interior regularity for weak solutions and partial regularity for suitable weak solutions of the perturbed Navier-Stokes system, which can be regarded as generalizations of the results in L. Caffarelli, R. Kohn, L. Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commun. Pure. Appl. Math. 35 (1982), 771–831, and S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscr. Math. 69 (1990), 237–254.

How to cite

top

Han, Pigong. "Interior regularity of weak solutions to the perturbed Navier-Stokes equations." Applications of Mathematics 57.5 (2012): 427-444. <http://eudml.org/doc/246868>.

@article{Han2012,
abstract = {In this paper we establish interior regularity for weak solutions and partial regularity for suitable weak solutions of the perturbed Navier-Stokes system, which can be regarded as generalizations of the results in L. Caffarelli, R. Kohn, L. Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commun. Pure. Appl. Math. 35 (1982), 771–831, and S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscr. Math. 69 (1990), 237–254.},
author = {Han, Pigong},
journal = {Applications of Mathematics},
keywords = {perturbed Navier-Stokes equations; interior regularity; partial regularity; perturbed Navier-Stokes equation; interior regularity; partial regularity},
language = {eng},
number = {5},
pages = {427-444},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Interior regularity of weak solutions to the perturbed Navier-Stokes equations},
url = {http://eudml.org/doc/246868},
volume = {57},
year = {2012},
}

TY - JOUR
AU - Han, Pigong
TI - Interior regularity of weak solutions to the perturbed Navier-Stokes equations
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 5
SP - 427
EP - 444
AB - In this paper we establish interior regularity for weak solutions and partial regularity for suitable weak solutions of the perturbed Navier-Stokes system, which can be regarded as generalizations of the results in L. Caffarelli, R. Kohn, L. Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commun. Pure. Appl. Math. 35 (1982), 771–831, and S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscr. Math. 69 (1990), 237–254.
LA - eng
KW - perturbed Navier-Stokes equations; interior regularity; partial regularity; perturbed Navier-Stokes equation; interior regularity; partial regularity
UR - http://eudml.org/doc/246868
ER -

References

top
  1. Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge University Press Cambridge (1967). (1967) Zbl0152.44402MR1744638
  2. Bae, H.-O., Choe, H. J., 10.1080/03605300701257500, Commun. Partial. Differ. Equations 32 (2007), 1173-1187. (2007) Zbl1220.35111MR2354489DOI10.1080/03605300701257500
  3. Veiga, H. Beirao da, 10.1007/PL00000955, J. Math. Fluid Mech. 2 (2000), 315-323. (2000) MR1814220DOI10.1007/PL00000955
  4. Veiga, H. Beirao da, A new regularity class for the Navier-Stokes equations in n , Chin. Ann. Math., Ser. B 16 (1995), 407-412. (1995) MR1380578
  5. Veiga, H. Beirao da, 10.1007/PL00000949, J. Math. Fluid Mech. 2 (2000), 99-106. (2000) MR1765772DOI10.1007/PL00000949
  6. Berselli, L. C., Galdi, G. P., 10.1090/S0002-9939-02-06697-2, Proc. Am. Math. Soc. 130 (2002), 3585-3595. (2002) MR1920038DOI10.1090/S0002-9939-02-06697-2
  7. Caffarelli, L., Kohn, R., Nirenberg, L., 10.1002/cpa.3160350604, Commun. Pure Appl. Math. 35 (1982), 771-831. (1982) Zbl0509.35067MR0673830DOI10.1002/cpa.3160350604
  8. Cao, C., Titi, E., 10.1512/iumj.2008.57.3719, Indiana Univ. Math. J. 57 (2008), 2643-2661. (2008) Zbl1159.35053MR2482994DOI10.1512/iumj.2008.57.3719
  9. Chae, D., Choe, H.-J., Regularity of solutions to the Navier-Stokes equation, Electron. J. Differ. Equ. 5 (1999), 1-7. (1999) Zbl0923.35117MR1673067
  10. Chae, D., Lee, J., 10.1016/S0362-546X(00)00163-2, Nonlinear Anal., Theory Methods Appl. 46 (2001), 727-735. (2001) Zbl1007.35064MR1857154DOI10.1016/S0362-546X(00)00163-2
  11. Chester, W., A general theory for the motion of a body through a fluid at low Reynolds number, Proc. R. Soc. Lond., Ser. A 430 (1990), 89-104. (1990) Zbl0703.76026MR1068486
  12. Chen, Z., Miyakawa, T., Decay properties of weak solutions to a perturbed Navier-Stokes system in n , Adv. Math. Sci. Appl. 7 (1997), 741-770. (1997) MR1476275
  13. Farwig, R., Komo, C., 10.1007/s00030-010-0055-4, NoDEA, Nonlinear Differ. Equ. Appl. 17 (2010), 303-321. (2010) Zbl1189.76115MR2652230DOI10.1007/s00030-010-0055-4
  14. Farwig, R., Kozono, H., Sohr, H., 10.1512/iumj.2007.56.3098, Indiana Univ. Math. J. 56 (2007), 2111-2132. (2007) Zbl1175.35100MR2359725DOI10.1512/iumj.2007.56.3098
  15. Han, P., 10.1007/s00028-009-0045-3, J. Evol. Equ. 10 (2010), 195-204. (2010) Zbl1239.35110MR2602932DOI10.1007/s00028-009-0045-3
  16. He, C., Regularity for solutions to the Navier-Stokes equations with one velocity component regular, Electron J. Differ. Equ. 29 (2002), 1-13. (2002) Zbl0993.35072MR1907705
  17. Hishida, T., 10.1007/s002050050190, Arch. Ration. Mech. Anal. 150 (1999), 307-348. (1999) Zbl0949.35106MR1741259DOI10.1007/s002050050190
  18. Iskauriaza, L., Seregin, G., Shverak, V., L 3 , -solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk. 58 (2003), 3-44 Russian; translation in Russ. Math. Surv. 58 (2003), 211-250. (2003) MR1992563
  19. Ladyzhenskaya, O., Seregin, G. A., 10.1007/s000210050015, J. Math. Fluid Mech. 1 (1999), 356-387. (1999) Zbl0954.35129MR1738171DOI10.1007/s000210050015
  20. Lin, F., 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A, Commun. Pure Appl. Math. 51 (1998), 241-257. (1998) Zbl0958.35102MR1488514DOI10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
  21. Masuda, K., 10.2748/tmj/1178228767, Tôhoku Math. J., II. Ser. 36 (1984), 623-646. (1984) MR0767409DOI10.2748/tmj/1178228767
  22. Neustupa, J., Novotný, A., Penel, P., An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, Quaderni di Matematica, Vol. 10: Topics in Mathematical Fluid Mechanics G. P. Galdi, R. Rannacher (2003), 168-183 20517774. (2003) MR2051774
  23. Neustupa, J., Penel, P., Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component, Applied Nonlinear Anal. A. Sequeira et al. Kluwer Academic/Plenum Publishers New York (1999), 391-402. (1999) Zbl0953.35113MR1727461
  24. Penel, P., Pokorný, M., 10.1023/B:APOM.0000048124.64244.7e, Appl. Math. 49 (2004), 483-493. (2004) Zbl1099.35101MR2086090DOI10.1023/B:APOM.0000048124.64244.7e
  25. Scheffer, V., 10.2140/pjm.1976.66.535, Pac. J. Math. 66 (1976), 535-552. (1976) Zbl0325.35064MR0454426DOI10.2140/pjm.1976.66.535
  26. Seregin, G., 10.1007/s00021-005-0190-6, J. Math. Fluid Mech. 9 (2007), 34-43. (2007) Zbl1128.35085MR2305824DOI10.1007/s00021-005-0190-6
  27. Serrin, J., 10.1007/BF00253344, Arch. Ration. Mech. Anal. 9 (1962), 187-195. (1962) Zbl0106.18302MR0136885DOI10.1007/BF00253344
  28. Solonnikov, V. A., Estimates of the solutions of a nonstationary linearized system of Navier-Stokes equations, Am. Math. Soc., Transl., II. Sér. 75 (1968), 1-116. (1968) Zbl0187.03402
  29. Struwe, M., 10.1002/cpa.3160410404, Commun. Pure Appl. Math. 41 (1988), 437-458. (1988) Zbl0632.76034MR0933230DOI10.1002/cpa.3160410404
  30. Takahashi, S., 10.1007/BF02567922, Manuscr. Math. 69 (1990), 237-254. (1990) Zbl0718.35022MR1078355DOI10.1007/BF02567922
  31. Zhou, Y., 10.1007/s00208-003-0478-x, Math. Ann. 328 (2004), 173-192. (2004) Zbl1054.35062MR2030374DOI10.1007/s00208-003-0478-x
  32. Zhou, Y., 10.1016/j.matpur.2005.07.003, J. Math. Pures Appl., IX. Sér. 84 (2005), 1496-1514. (2005) Zbl1092.35081MR2181458DOI10.1016/j.matpur.2005.07.003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.