A characterization of harmonic sections and a Liouville theorem
Archivum Mathematicum (2012)
- Volume: 048, Issue: 2, page 149-162
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topStelmastchuk, Simão. "A characterization of harmonic sections and a Liouville theorem." Archivum Mathematicum 048.2 (2012): 149-162. <http://eudml.org/doc/246902>.
@article{Stelmastchuk2012,
abstract = {Let $P(M,G)$ be a principal fiber bundle and $E(M,N,G,P)$ an associated fiber bundle. Our interest is to study the harmonic sections of the projection $\pi _\{E\}$ of $E$ into $M$. Our first purpose is give a characterization of harmonic sections of $M$ into $E$ regarding its equivariant lift. The second purpose is to show a version of a Liouville theorem for harmonic sections of $\pi _\{E\}$.},
author = {Stelmastchuk, Simão},
journal = {Archivum Mathematicum},
keywords = {harmonic sections; Liouville theorem; stochastic analysis on manifolds; harmonic section; Liouville theorem; stochastic analysis on manifolds},
language = {eng},
number = {2},
pages = {149-162},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A characterization of harmonic sections and a Liouville theorem},
url = {http://eudml.org/doc/246902},
volume = {048},
year = {2012},
}
TY - JOUR
AU - Stelmastchuk, Simão
TI - A characterization of harmonic sections and a Liouville theorem
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 2
SP - 149
EP - 162
AB - Let $P(M,G)$ be a principal fiber bundle and $E(M,N,G,P)$ an associated fiber bundle. Our interest is to study the harmonic sections of the projection $\pi _{E}$ of $E$ into $M$. Our first purpose is give a characterization of harmonic sections of $M$ into $E$ regarding its equivariant lift. The second purpose is to show a version of a Liouville theorem for harmonic sections of $\pi _{E}$.
LA - eng
KW - harmonic sections; Liouville theorem; stochastic analysis on manifolds; harmonic section; Liouville theorem; stochastic analysis on manifolds
UR - http://eudml.org/doc/246902
ER -
References
top- Arvanitoyeorgos, A., An introduction to Lie groups and the geometry of homogeneous spaces, Student Mathematical Library, vol. 22, AMS, Providence, RI, 2003. (2003) Zbl1045.53001MR2011126
- Benyounes, M., Loubeau, E., Wood, C. M., 10.1016/j.difgeo.2006.11.010, Differential Geom. Appl. 25 (3) (2007), 322–334. (2007) Zbl1128.53037MR2330461DOI10.1016/j.difgeo.2006.11.010
- Catuogno, P., A geometric Itô formula, Workshop on Differential Geometry. Mat. Contemp., vol. 33, 2007, pp. 85–99. (2007) Zbl1156.58013MR2429603
- Catuogno, P., Stelmastchuk, S., 10.1007/s11118-007-9068-y, Potential Anal. 28 (2008), 61–69. (2008) Zbl1131.53033MR2366399DOI10.1007/s11118-007-9068-y
- Elworthy, K. D., Kendall, W. S., Factorization of harmonic maps and Brownian motions, Pitman Res. Notes Math. Ser. 150 (1985), 72–83. (1985) MR0894524
- Emery, M., On two transfer principles in stochastic differential geometry, Séminaire de Probabilités XXIV, 407 – 441, Lectures Notes in Math., 1426, Springer, Berlin, 1989. (1989) MR1071558
- Emery, M., Stochastic Calculus in Manifolds, Springer, Berlin, 1989. (1989) Zbl0697.60060MR1030543
- Emery, M., Martingales continues dans les variétés différentiables, Lectures on probability theory and statistics (Saint-Flour, 1998), 1–84, Lecture Notes in Math., 1738, Springer, Berlin, 2000. (2000) Zbl0969.60042MR1775639
- Hsu, E., Stochastic analysis on manifolds, Grad. Stud. Math. 38 (2002). (2002) Zbl0994.58019MR1882015
- Ishihara, S., Yano, K., Tangent and cotangent bundles: Differential geometry, Pure Appl. Math. 16 (1973). (1973) Zbl0262.53024MR0350650
- Ishihara, T., Harmonic sections of tangent bundles, J. Math. Tokushima Univ. 13 (1979), 23–27. (1979) Zbl0427.53019MR0563393
- J., Vilms, Totally geodesic maps, J. Differential Geom. 4 (1970), 73–79. (1970) Zbl0194.52901MR0262984
- Kendall, W. S., 10.1080/17442508608833419, Stochastics 19 (1–2) (1986), 111–129. (1986) Zbl0584.58045MR0864339DOI10.1080/17442508608833419
- Kendall, W. S., From stochastic parallel transport to harmonic maps, New directions in Dirichlet forms, Amer. Math. Soc., Stud. Adv. Math. 8 ed., 1998, pp. 49–115. (1998) Zbl0924.58110MR1652279
- Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, vol. I, Interscience Publishers, New York, 1963. (1963) Zbl0119.37502MR0152974
- Lindvall, T., Rogers, L. C. G., 10.1214/aop/1176992442, Ann. Probab. 14 (3) (1986), 860–872. (1986) Zbl0593.60076MR0841588DOI10.1214/aop/1176992442
- Meyer, P. A., Géométrie stochastique sans larmes, Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), Lecture Notes in Math., 850, Springer, Berlin–New York, 1981, pp. 44–102. (1981) Zbl0459.60046MR0622555
- Musso, E., Tricerri, F., Riemannian metrics on tangent bundle, Ann. Mat. Pura Appl. (4) 150 (1988), 1–19. (1988) MR0946027
- Poor, W. A., Differential geometric structures, McGraw-Hill Book Co., New York, 1981. (1981) Zbl0493.53027MR0647949
- Protter, P., Stochastic integration and differential equations. A new approach, Applications of Mathematics (New York), vol. 21, Springer-Verlag, Berlin, 1990. (1990) Zbl0694.60047MR1037262
- Shigekawa, I., 10.1007/BF00531745, Z. Wahrsch. Verw. Gebiete 59 (2) (1982), 211–221. (1982) Zbl0487.60056MR0650613DOI10.1007/BF00531745
- Wood, C. M., 10.1112/jlms/s2-33.1.157, J. London Math. Soc. (2) 33 (1) (1986), 157–168. (1986) MR0829396DOI10.1112/jlms/s2-33.1.157
- Wood, C. M., Harmonic sections and Yang – Mills fields, Proc. London Math. Soc. (3) 54 (3) (1987), 544–558. (1987) Zbl0616.53028MR0879397
- Wood, C. M., 10.1007/BF02677834, Manuscripta Math. 94 (1) (1997), 1–13. (1997) Zbl0914.58011MR1468930DOI10.1007/BF02677834
- Wood, C. M., 10.1016/S0926-2245(03)00021-4, Differential Geom. Appl. 19 (2) (2003), 193–210. (2003) Zbl1058.53053MR2002659DOI10.1016/S0926-2245(03)00021-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.