A new one-step smoothing newton method for second-order cone programming
Jingyong Tang; Guoping He; Li Dong; Liang Fang
Applications of Mathematics (2012)
- Volume: 57, Issue: 4, page 311-331
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topTang, Jingyong, et al. "A new one-step smoothing newton method for second-order cone programming." Applications of Mathematics 57.4 (2012): 311-331. <http://eudml.org/doc/246934>.
@article{Tang2012,
abstract = {In this paper, we present a new one-step smoothing Newton method for solving the second-order cone programming (SOCP). Based on a new smoothing function of the well-known Fischer-Burmeister function, the SOCP is approximated by a family of parameterized smooth equations. Our algorithm solves only one system of linear equations and performs only one Armijo-type line search at each iteration. It can start from an arbitrary initial point and does not require the iterative points to be in the sets of strictly feasible solutions. Without requiring strict complementarity at the SOCP solution, the proposed algorithm is shown to be globally and locally quadratically convergent under suitable assumptions. Numerical experiments demonstrate the feasibility and efficiency of our algorithm.},
author = {Tang, Jingyong, He, Guoping, Dong, Li, Fang, Liang},
journal = {Applications of Mathematics},
keywords = {second-order cone programming; smoothing Newton method; global convergence; quadratic convergence; Fischer-Burmeister function; Euclidean Jordan algebra; local quadratic convergence; Fischer-Burmeister function; Euclidean Jordan algebra; smoothing Newton method; global convergence; local quadratic convergence},
language = {eng},
number = {4},
pages = {311-331},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new one-step smoothing newton method for second-order cone programming},
url = {http://eudml.org/doc/246934},
volume = {57},
year = {2012},
}
TY - JOUR
AU - Tang, Jingyong
AU - He, Guoping
AU - Dong, Li
AU - Fang, Liang
TI - A new one-step smoothing newton method for second-order cone programming
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 4
SP - 311
EP - 331
AB - In this paper, we present a new one-step smoothing Newton method for solving the second-order cone programming (SOCP). Based on a new smoothing function of the well-known Fischer-Burmeister function, the SOCP is approximated by a family of parameterized smooth equations. Our algorithm solves only one system of linear equations and performs only one Armijo-type line search at each iteration. It can start from an arbitrary initial point and does not require the iterative points to be in the sets of strictly feasible solutions. Without requiring strict complementarity at the SOCP solution, the proposed algorithm is shown to be globally and locally quadratically convergent under suitable assumptions. Numerical experiments demonstrate the feasibility and efficiency of our algorithm.
LA - eng
KW - second-order cone programming; smoothing Newton method; global convergence; quadratic convergence; Fischer-Burmeister function; Euclidean Jordan algebra; local quadratic convergence; Fischer-Burmeister function; Euclidean Jordan algebra; smoothing Newton method; global convergence; local quadratic convergence
UR - http://eudml.org/doc/246934
ER -
References
top- Alizadeh, F., Goldfarb, D., 10.1007/s10107-002-0339-5, Math. Program. 95 (2003), 3-51. (2003) Zbl1153.90522MR1971381DOI10.1007/s10107-002-0339-5
- Bai, Y. Q., Wang, G. Q., Roos, C., Primal-dual interior-point algorithms for second-order cone optimization based on kernel functions, Nonlinear Anal., Theory Methods Appl. 70 (2009), 3584-3602. (2009) Zbl1190.90275MR2502767
- Chen, B., Xiu, N., 10.1137/S1052623497316191, SIAM J. Optim. 9 (1999), 605-623. (1999) MR1681059DOI10.1137/S1052623497316191
- Chen, J. S., Tseng, P., 10.1007/s10107-005-0617-0, Math. Program., Ser B 104 (2005), 293-327. (2005) Zbl1093.90063MR2179239DOI10.1007/s10107-005-0617-0
- Clarke, F. H., Optimization and Nonsmooth Analysis, Wiley Sons New York (1983), Reprinted by SIAM, Philadelphia, 1990 0709590. (1983) Zbl0582.49001MR1058436
- Debnath, R., Muramatsu, M., Takahashi, H., 10.1007/s10489-005-4609-9, Appl. Intel. 23 (2005), 219-239. (2005) Zbl1080.68618DOI10.1007/s10489-005-4609-9
- Faraut, J., Korányi, A., Analysis on Symmetric Cones, Clarendon Press Oxford (1994). (1994) MR1446489
- Faybusovich, L., 10.1023/A:1009701824047, Positivity 1 (1997), 331-357. (1997) Zbl0973.90095MR1660399DOI10.1023/A:1009701824047
- Fukushima, M., Luo, Z.-Q., Tseng, P., 10.1137/S1052623400380365, SIAM J. Optim. 12 (2002), 436-460. (2002) MR1885570DOI10.1137/S1052623400380365
- Hayashi, S., Yamashita, N., Fukushima, M., 10.1137/S1052623403421516, SIAM J. Optim. 15 (2005), 593-615. (2005) Zbl1114.90139MR2144183DOI10.1137/S1052623403421516
- Jiang, H., Smoothed Fischer-Burmeister equation methods for the complementarity problem, Technical Report Department of Mathematics, The University of Melbourne Parille, Victoria, Australia, June 1997.
- Kuo, Y.-J., Mittelmann, H. D., 10.1023/B:COAP.0000033964.95511.23, Comput. Optim. Appl. 28 (2004), 255-285. (2004) Zbl1084.90046MR2080003DOI10.1023/B:COAP.0000033964.95511.23
- Lobo, M. S., Vandenberghe, L., Boyd, S., Lebret, H., Applications of second-order cone programming, Linear Algebra Appl. 284 (1998), 193-228. (1998) Zbl0946.90050MR1655138
- Monteiro, R. D. C., Tsuchiya, T., 10.1007/PL00011378, Math. Program. 88 (2000), 61-83. (2000) MR1765893DOI10.1007/PL00011378
- Ma, C., Chen, X., 10.1016/j.cam.2007.03.031, J. Comput. Appl. Math. 216 (2008), 1-13. (2008) Zbl1140.65046MR2421836DOI10.1016/j.cam.2007.03.031
- Mifflin, R., 10.1137/0315061, SIAM J. Control Optim. 15 (1977), 959-972. (1977) Zbl0376.90081MR0461556DOI10.1137/0315061
- Nesterov, Y. E., Todd, M. J., 10.1137/S1052623495290209, SIAM J. Optim. 8 (1998), 324-364. (1998) Zbl0922.90110MR1618802DOI10.1137/S1052623495290209
- Peng, X., King, I., 10.1016/j.neunet.2007.12.051, Neural Networks 21 (2008), 450-457. (2008) DOI10.1016/j.neunet.2007.12.051
- Peng, J., Roos, C., Terlaky, T., 10.1137/S1052623401383236, SIAM J. Optim. 13 (2002), 179-203. (2002) MR1922760DOI10.1137/S1052623401383236
- Qi, L., Sun, D., 10.1090/S0025-5718-99-01082-0, Math. Comput. 69 (2000), 283-304. (2000) Zbl0947.90117MR1642766DOI10.1090/S0025-5718-99-01082-0
- Qi, L., Sun, D., Zhou, G., 10.1007/s101079900127, Math. Program. 87 (2000), 1-35. (2000) Zbl0989.90124MR1734657DOI10.1007/s101079900127
- Qi, L., Sun, J., 10.1007/BF01581275, Math. Program. 58 (1993), 353-367. (1993) Zbl0780.90090MR1216791DOI10.1007/BF01581275
- Shivaswamy, P. K., Bhattacharyya, C., Smola, A. J., Second order cone programming approaches for handling missing and uncertain data, J. Mach. Learn. Res. 7 (2006), 1283-1314. (2006) Zbl1222.68305MR2274406
- Hayashi, S., Yamashita, N., Fukushima, M., 10.1137/S1052623403421516, SIAM J. Optim. 15 (2005), 593-615. (2005) Zbl1114.90139MR2144183DOI10.1137/S1052623403421516
- Sasakawa, T., Tsuchiya, T., 10.1137/S1064827500380350, SIAM J. Sci. Comput. 24 (2003), 1930-1950. (2003) Zbl1163.90796MR2005615DOI10.1137/S1064827500380350
- Sun, D., Sun, J., 10.1007/s10107-005-0577-4, Math. Program., Ser A. 103 (2005), 575-581. (2005) Zbl1099.90062MR2166550DOI10.1007/s10107-005-0577-4
- Toh, K. C., Tütüncü, R. H., Todd, M. J., SDPT3 Version 3.02---A MATLAB software for semidefinite-quadratic-linear programming, (2002), http://www.math.nus.edu.sg/ mattohkc/sdpt3.html. (2002)
- Tseng, P., 10.1007/978-1-4757-3226-9_24, Nonlinear Optimization and Related Topics G. Di Pillo, F. Giannessi Kluwer Academic Publishers Dordrecht Appl. Optim. 36 (2000), 445-462. (2000) Zbl0965.65091MR1777934DOI10.1007/978-1-4757-3226-9_24
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.