Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums

Huaning Liu; Jing Gao

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 4, page 1147-1159
  • ISSN: 0011-4642

Abstract

top
Let q , h , a , b be integers with q > 0 . The classical and the homogeneous Dedekind sums are defined by s ( h , q ) = j = 1 q j q h j q , s ( a , b , q ) = j = 1 q a j q b j q , respectively, where ( ( x ) ) = x - [ x ] - 1 2 , if x is not an integer ; 0 , if x is an integer . The Knopp identities for the classical and the homogeneous Dedekind sum were the following: d n r = 1 d s n d a + r q , d q = σ ( n ) s ( a , q ) , d n r 1 = 1 d r 2 = 1 d s n d a + r 1 q , n d b + r 2 q , d q = n σ ( n ) s ( a , b , q ) , where σ ( n ) = d n d . In this paper generalized homogeneous Hardy sums and Cochrane-Hardy sums are defined, and their arithmetic properties are studied. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums are given.

How to cite

top

Liu, Huaning, and Gao, Jing. "Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums." Czechoslovak Mathematical Journal 62.4 (2012): 1147-1159. <http://eudml.org/doc/246962>.

@article{Liu2012,
abstract = {Let $q$, $h$, $a$, $b$ be integers with $q>0$. The classical and the homogeneous Dedekind sums are defined by \[ s(h,q)=\sum \_\{j=1\}^q\Big (\Big (\frac\{j\}\{q\}\Big )\Big )\Big (\Big (\frac\{hj\}\{q\}\Big )\Big ),\quad s(a,b,q)=\sum \_\{j=1\}^q\Big (\Big (\frac\{aj\}\{q\}\Big )\Big )\Big (\Big (\frac\{bj\}\{q\}\Big )\Big ), \] respectively, where \[ ((x))= \{\left\lbrace \begin\{array\}\{ll\} x-[x]-\frac\{1\}\{2\}, & \text\{if $x$ is not an integer\};\\ 0, & \text\{if $x$ is an integer\}. \end\{array\}\right.\} \] The Knopp identities for the classical and the homogeneous Dedekind sum were the following: \[ \begin\{array\}\{c\}\sum \_\{d\mid n\}\sum \_\{r=1\}^d s\Big (\frac\{n\}\{d\}a+rq,dq\Big )=\sigma (n)s(a,q),\\ \sum \_\{d\mid n\}\sum \_\{r\_1=1\}^d\sum \_\{r\_2=1\}^d s\Big (\frac\{n\}\{d\}a+r\_1q,\frac\{n\}\{d\}b+r\_2q,dq\Big )=n\sigma (n)s(a,b,q), \end\{array\}\] where $\sigma (n)=\sum \nolimits _\{d\mid n\}d$. In this paper generalized homogeneous Hardy sums and Cochrane-Hardy sums are defined, and their arithmetic properties are studied. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums are given.},
author = {Liu, Huaning, Gao, Jing},
journal = {Czechoslovak Mathematical Journal},
keywords = {Dedekind sum; Cochrane sum; Knopp identity; Dedekind sum; Cochrane sum; Knopp identity},
language = {eng},
number = {4},
pages = {1147-1159},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums},
url = {http://eudml.org/doc/246962},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Liu, Huaning
AU - Gao, Jing
TI - Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 1147
EP - 1159
AB - Let $q$, $h$, $a$, $b$ be integers with $q>0$. The classical and the homogeneous Dedekind sums are defined by \[ s(h,q)=\sum _{j=1}^q\Big (\Big (\frac{j}{q}\Big )\Big )\Big (\Big (\frac{hj}{q}\Big )\Big ),\quad s(a,b,q)=\sum _{j=1}^q\Big (\Big (\frac{aj}{q}\Big )\Big )\Big (\Big (\frac{bj}{q}\Big )\Big ), \] respectively, where \[ ((x))= {\left\lbrace \begin{array}{ll} x-[x]-\frac{1}{2}, & \text{if $x$ is not an integer};\\ 0, & \text{if $x$ is an integer}. \end{array}\right.} \] The Knopp identities for the classical and the homogeneous Dedekind sum were the following: \[ \begin{array}{c}\sum _{d\mid n}\sum _{r=1}^d s\Big (\frac{n}{d}a+rq,dq\Big )=\sigma (n)s(a,q),\\ \sum _{d\mid n}\sum _{r_1=1}^d\sum _{r_2=1}^d s\Big (\frac{n}{d}a+r_1q,\frac{n}{d}b+r_2q,dq\Big )=n\sigma (n)s(a,b,q), \end{array}\] where $\sigma (n)=\sum \nolimits _{d\mid n}d$. In this paper generalized homogeneous Hardy sums and Cochrane-Hardy sums are defined, and their arithmetic properties are studied. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums are given.
LA - eng
KW - Dedekind sum; Cochrane sum; Knopp identity; Dedekind sum; Cochrane sum; Knopp identity
UR - http://eudml.org/doc/246962
ER -

References

top
  1. Apostol, T. M., Modular Functions and Dirichlet Series in Number Theory, Springer New York, Heidelberg, Berlin (1976). (1976) Zbl0332.10017MR0422157
  2. Berndt, B. C., Analytic Eisentein series, theta-functions, and series relations in the spirit of Ramanujan, J. Reine Angew. Math. 303/304 (1978), 332-365. (1978) MR0514690
  3. Berndt, B. C., Goldberg, L. A., 10.1137/0515011, SIAM J. Math. Anal. 15 (1984), 143-150. (1984) Zbl0537.10006MR0728690DOI10.1137/0515011
  4. Goldberg, L. A., 10.1016/0022-314X(80)90044-X, J. Number Theory 12 (1980), 541-542. (1980) Zbl0444.10006MR0599823DOI10.1016/0022-314X(80)90044-X
  5. Hall, R. R., Huxley, M. N., 10.4064/aa-63-1-79-90, Acta Arith. 63 (1993), 79-90. (1993) Zbl0785.11027MR1201620DOI10.4064/aa-63-1-79-90
  6. Knopp, M. I., 10.1016/0022-314X(80)90067-0, J. Number Theory 12 (1980), 2-9. (1980) Zbl0423.10015MR0566863DOI10.1016/0022-314X(80)90067-0
  7. Parson, L. A., 10.1017/S0305004100057315, Math. Proc. Camb. Philos. Soc. 88 (1980), 11-14. (1980) Zbl0435.10005MR0569629DOI10.1017/S0305004100057315
  8. Pettet, M. R., Sitaramachandrarao, R., 10.1016/0022-314X(87)90036-9, J. Number Theory 25 (1987), 328-339. (1987) Zbl0604.10003MR0880466DOI10.1016/0022-314X(87)90036-9
  9. Rademacher, H., Grosswald, E., Dedekind Sums, The Carus Mathematical Monographs No. 16 The Mathematical Association of America, Washington, D. C. (1972). (1972) Zbl0251.10020MR0357299
  10. Sitaramachandrarao, R., 10.4064/aa-48-4-325-340, Acta Arith. 48 (1987), 325-340. (1987) Zbl0635.10002MR0927374DOI10.4064/aa-48-4-325-340
  11. Zhang, W., 10.1006/jmaa.2001.7752, J. Math. Anal. Appl. 267 (2002), 89-96. (2002) Zbl1106.11304MR1886818DOI10.1006/jmaa.2001.7752
  12. Zhang, W., 10.1016/S0022-247X(02)00501-2, J. Math. Anal. Appl. 276 (2002), 446-457. (2002) Zbl1106.11304MR1944361DOI10.1016/S0022-247X(02)00501-2
  13. Zhang, W., Liu, H., 10.1016/j.jmaa.2003.09.056, J. Math. Anal. Appl. 288 (2003), 646-659. (2003) Zbl1046.11056MR2020186DOI10.1016/j.jmaa.2003.09.056
  14. Zhang, W., Yi, Y., On the upper bound estimate of Cochrane sums, Soochow J. Math. 28 (2002), 297-304. (2002) Zbl1016.11038MR1926326
  15. Zheng, Z., On an identity for Dedekind sums, Acta Math. Sin. 37 (1994), 690-694. (1994) Zbl0842.11017
  16. Zheng, Z., 10.1006/jnth.1996.0045, J. Number Theory 57 (1996), 223-230. (1996) Zbl0847.11021MR1382748DOI10.1006/jnth.1996.0045

NotesEmbed ?

top

You must be logged in to post comments.