Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums

Huaning Liu; Jing Gao

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 4, page 1147-1159
  • ISSN: 0011-4642

Abstract

top
Let q , h , a , b be integers with q > 0 . The classical and the homogeneous Dedekind sums are defined by s ( h , q ) = j = 1 q j q h j q , s ( a , b , q ) = j = 1 q a j q b j q , respectively, where ( ( x ) ) = x - [ x ] - 1 2 , if x is not an integer ; 0 , if x is an integer . The Knopp identities for the classical and the homogeneous Dedekind sum were the following: d n r = 1 d s n d a + r q , d q = σ ( n ) s ( a , q ) , d n r 1 = 1 d r 2 = 1 d s n d a + r 1 q , n d b + r 2 q , d q = n σ ( n ) s ( a , b , q ) , where σ ( n ) = d n d . In this paper generalized homogeneous Hardy sums and Cochrane-Hardy sums are defined, and their arithmetic properties are studied. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums are given.

How to cite

top

Liu, Huaning, and Gao, Jing. "Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums." Czechoslovak Mathematical Journal 62.4 (2012): 1147-1159. <http://eudml.org/doc/246962>.

@article{Liu2012,
abstract = {Let $q$, $h$, $a$, $b$ be integers with $q>0$. The classical and the homogeneous Dedekind sums are defined by \[ s(h,q)=\sum \_\{j=1\}^q\Big (\Big (\frac\{j\}\{q\}\Big )\Big )\Big (\Big (\frac\{hj\}\{q\}\Big )\Big ),\quad s(a,b,q)=\sum \_\{j=1\}^q\Big (\Big (\frac\{aj\}\{q\}\Big )\Big )\Big (\Big (\frac\{bj\}\{q\}\Big )\Big ), \] respectively, where \[ ((x))= \{\left\lbrace \begin\{array\}\{ll\} x-[x]-\frac\{1\}\{2\}, & \text\{if $x$ is not an integer\};\\ 0, & \text\{if $x$ is an integer\}. \end\{array\}\right.\} \] The Knopp identities for the classical and the homogeneous Dedekind sum were the following: \[ \begin\{array\}\{c\}\sum \_\{d\mid n\}\sum \_\{r=1\}^d s\Big (\frac\{n\}\{d\}a+rq,dq\Big )=\sigma (n)s(a,q),\\ \sum \_\{d\mid n\}\sum \_\{r\_1=1\}^d\sum \_\{r\_2=1\}^d s\Big (\frac\{n\}\{d\}a+r\_1q,\frac\{n\}\{d\}b+r\_2q,dq\Big )=n\sigma (n)s(a,b,q), \end\{array\}\] where $\sigma (n)=\sum \nolimits _\{d\mid n\}d$. In this paper generalized homogeneous Hardy sums and Cochrane-Hardy sums are defined, and their arithmetic properties are studied. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums are given.},
author = {Liu, Huaning, Gao, Jing},
journal = {Czechoslovak Mathematical Journal},
keywords = {Dedekind sum; Cochrane sum; Knopp identity; Dedekind sum; Cochrane sum; Knopp identity},
language = {eng},
number = {4},
pages = {1147-1159},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums},
url = {http://eudml.org/doc/246962},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Liu, Huaning
AU - Gao, Jing
TI - Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 1147
EP - 1159
AB - Let $q$, $h$, $a$, $b$ be integers with $q>0$. The classical and the homogeneous Dedekind sums are defined by \[ s(h,q)=\sum _{j=1}^q\Big (\Big (\frac{j}{q}\Big )\Big )\Big (\Big (\frac{hj}{q}\Big )\Big ),\quad s(a,b,q)=\sum _{j=1}^q\Big (\Big (\frac{aj}{q}\Big )\Big )\Big (\Big (\frac{bj}{q}\Big )\Big ), \] respectively, where \[ ((x))= {\left\lbrace \begin{array}{ll} x-[x]-\frac{1}{2}, & \text{if $x$ is not an integer};\\ 0, & \text{if $x$ is an integer}. \end{array}\right.} \] The Knopp identities for the classical and the homogeneous Dedekind sum were the following: \[ \begin{array}{c}\sum _{d\mid n}\sum _{r=1}^d s\Big (\frac{n}{d}a+rq,dq\Big )=\sigma (n)s(a,q),\\ \sum _{d\mid n}\sum _{r_1=1}^d\sum _{r_2=1}^d s\Big (\frac{n}{d}a+r_1q,\frac{n}{d}b+r_2q,dq\Big )=n\sigma (n)s(a,b,q), \end{array}\] where $\sigma (n)=\sum \nolimits _{d\mid n}d$. In this paper generalized homogeneous Hardy sums and Cochrane-Hardy sums are defined, and their arithmetic properties are studied. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums are given.
LA - eng
KW - Dedekind sum; Cochrane sum; Knopp identity; Dedekind sum; Cochrane sum; Knopp identity
UR - http://eudml.org/doc/246962
ER -

References

top
  1. Apostol, T. M., Modular Functions and Dirichlet Series in Number Theory, Springer New York, Heidelberg, Berlin (1976). (1976) Zbl0332.10017MR0422157
  2. Berndt, B. C., Analytic Eisentein series, theta-functions, and series relations in the spirit of Ramanujan, J. Reine Angew. Math. 303/304 (1978), 332-365. (1978) MR0514690
  3. Berndt, B. C., Goldberg, L. A., 10.1137/0515011, SIAM J. Math. Anal. 15 (1984), 143-150. (1984) Zbl0537.10006MR0728690DOI10.1137/0515011
  4. Goldberg, L. A., 10.1016/0022-314X(80)90044-X, J. Number Theory 12 (1980), 541-542. (1980) Zbl0444.10006MR0599823DOI10.1016/0022-314X(80)90044-X
  5. Hall, R. R., Huxley, M. N., 10.4064/aa-63-1-79-90, Acta Arith. 63 (1993), 79-90. (1993) Zbl0785.11027MR1201620DOI10.4064/aa-63-1-79-90
  6. Knopp, M. I., 10.1016/0022-314X(80)90067-0, J. Number Theory 12 (1980), 2-9. (1980) Zbl0423.10015MR0566863DOI10.1016/0022-314X(80)90067-0
  7. Parson, L. A., 10.1017/S0305004100057315, Math. Proc. Camb. Philos. Soc. 88 (1980), 11-14. (1980) Zbl0435.10005MR0569629DOI10.1017/S0305004100057315
  8. Pettet, M. R., Sitaramachandrarao, R., 10.1016/0022-314X(87)90036-9, J. Number Theory 25 (1987), 328-339. (1987) Zbl0604.10003MR0880466DOI10.1016/0022-314X(87)90036-9
  9. Rademacher, H., Grosswald, E., Dedekind Sums, The Carus Mathematical Monographs No. 16 The Mathematical Association of America, Washington, D. C. (1972). (1972) Zbl0251.10020MR0357299
  10. Sitaramachandrarao, R., 10.4064/aa-48-4-325-340, Acta Arith. 48 (1987), 325-340. (1987) Zbl0635.10002MR0927374DOI10.4064/aa-48-4-325-340
  11. Zhang, W., 10.1006/jmaa.2001.7752, J. Math. Anal. Appl. 267 (2002), 89-96. (2002) Zbl1106.11304MR1886818DOI10.1006/jmaa.2001.7752
  12. Zhang, W., 10.1016/S0022-247X(02)00501-2, J. Math. Anal. Appl. 276 (2002), 446-457. (2002) Zbl1106.11304MR1944361DOI10.1016/S0022-247X(02)00501-2
  13. Zhang, W., Liu, H., 10.1016/j.jmaa.2003.09.056, J. Math. Anal. Appl. 288 (2003), 646-659. (2003) Zbl1046.11056MR2020186DOI10.1016/j.jmaa.2003.09.056
  14. Zhang, W., Yi, Y., On the upper bound estimate of Cochrane sums, Soochow J. Math. 28 (2002), 297-304. (2002) Zbl1016.11038MR1926326
  15. Zheng, Z., On an identity for Dedekind sums, Acta Math. Sin. 37 (1994), 690-694. (1994) Zbl0842.11017
  16. Zheng, Z., 10.1006/jnth.1996.0045, J. Number Theory 57 (1996), 223-230. (1996) Zbl0847.11021MR1382748DOI10.1006/jnth.1996.0045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.